Module 1 - Hydrogen Basics - Tom Timbario


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Module 1 - Hydrogen Basics - Tom Timbario

  1. 1. Hydrogen Workshop for Fleet Operators
  2. 2. Module 1, “Hydrogen Basics”
  3. 3. Hydrogen Basics Outline <ul><li>Why Hydrogen? </li></ul><ul><li>Department of Energy’s Hydrogen Program </li></ul><ul><ul><li>President’s Hydrogen Fuel Initiative </li></ul></ul><ul><ul><li>Energy Policy Act of 2005 </li></ul></ul><ul><li>Hydrogen Efforts in the United States </li></ul><ul><li>Hydrogen Highway </li></ul><ul><li>International Hydrogen Efforts </li></ul><ul><li>Hydrogen Basics </li></ul><ul><li>Hydrogen Combustion Properties </li></ul><ul><li>Hydrogen Fuel Safety </li></ul>Bright white blobs show stars formed 5-10 million years ago, reddish pink clouds indicate hydrogen clouds where stars are currently forming (NASA)
  4. 4. Why Hydrogen? <ul><li>ENVIRONMENTAL STEWARDSHIP </li></ul><ul><li>ENERGY SECURITY </li></ul><ul><li>ECONOMIC PROSPERITY </li></ul>
  5. 5. Why Hydrogen? – Energy Security
  6. 6. Why Hydrogen? – Energy Security <ul><li>Petroleum demand </li></ul><ul><ul><li>Gasoline and diesel fuel are currently above $3.00 per gallon </li></ul></ul><ul><ul><li>Nation’s previous high weighted average for all 3 grades was $1.38 a gallon in March 1981 ($3.03 in today’s dollars) </li></ul></ul><ul><ul><li>Spikes have occurred despite declines in the cost of crude oil </li></ul></ul><ul><ul><li>Hurricane Katrina decimated refineries along the Gulf Coast cutting 11% of the refining capacity for all petroleum products </li></ul></ul>
  7. 7. Why Hydrogen? – Energy Security <ul><li>Petroleum demand </li></ul><ul><ul><li>US consumes approximately 20 million barrels per day (bpd) </li></ul></ul><ul><ul><li>Over 97% of US transportation fuel comes from oil </li></ul></ul><ul><ul><li>Almost 2/3 of the 20 million barrels of oil is used for transportation </li></ul></ul><ul><ul><li>Oil consumption in 2004 was up 3.4% or 2.5 million bpd </li></ul></ul><ul><ul><li>US imports 55% of the oil it consumes; that is expected to grow to 68% by 2025 </li></ul></ul>“ BP Statistical Review of World Energy 2005: Record Demand Drove Energy Markets in 2004”, Press Release from BP, June 2005 Energy Information Administration, “Annual Energy Outlook 2004”
  8. 8. Why Hydrogen? – Energy Security <ul><li>Energy demand </li></ul><ul><ul><li>World’s overall energy consumption grew by 4.3% in 2004 </li></ul></ul><ul><ul><li>Largest-ever annual increase in global energy consumption and is the highest percentage growth since 1984 </li></ul></ul><ul><ul><li>Chinese energy demand has risen by 65% over the past 3 years </li></ul></ul><ul><ul><li>China now consumes 13.6% of the world’s total energy </li></ul></ul>BP Statistical Review of World Energy 2005: Record Demand Drove Energy Markets in 2004”, Press Release from BP, June 2005
  9. 9. Why Hydrogen? – Environmental Stewardship <ul><li>Environmental protection </li></ul><ul><ul><li>Hydrogen can be used in vehicles powered by either internal combustion engines (ICEs) or fuel cells </li></ul></ul><ul><ul><li>Near-zero (ICEs) or zero (fuel cells) emissions </li></ul></ul><ul><ul><li>When produced from renewable sources, the entire chain of processes (fuel production through end-use in a vehicle) results in extremely low environmental impacts </li></ul></ul>This is what hydrogen will eliminate
  10. 10. Why Hydrogen? <ul><li>Resource flexibility </li></ul><ul><ul><li>Hydrogen can be generated from a variety of feedstocks like fossil fuels (oil, coal) and renewable sources (biomass, sunlight ). </li></ul></ul><ul><ul><li>Because hydrogen exists in many different forms, in any one region, there are a variety of local feedstocks from which the hydrogen can be extracted </li></ul></ul>
  11. 11. Hydrogen Experience <ul><li>Hydrogen was first produced in the 1400s when early European experimenters dissolved metal in acids </li></ul><ul><li>Sir William Robert Grove used electricity to split hydrogen and oxygen in 1839 </li></ul><ul><li>Ludwig Mond and Charles Langer coin the term “fuel cell” in 1889 </li></ul><ul><li>First fuel cell powered vehicle in the world is demonstrated in 1959 </li></ul><ul><li>Used since the early 1960s to power NASA’s space vehicles </li></ul>Fuel cell design by Mond and Langer, 1889
  12. 12. <ul><li>$1.2 billion Hydrogen Fuel Initiative to reverse US’s growing dependence on foreign oil </li></ul><ul><li>Lower the cost of hydrogen enough to make it cost competitive with gasoline by 2010 </li></ul><ul><li>FY 2004 appropriation: $156 million </li></ul><ul><li>FY 2005 appropriation: $225 million </li></ul><ul><li>FY 2006 request: $260 million </li></ul><ul><li>Advance the methods of producing hydrogen </li></ul><ul><li>Provide R&D for hydrogen storage </li></ul>President’s Hydrogen Fuel Initiative US Department of Energy, “Hydrogen, Fuel Cells & Infrastructure Technologies Program: President’s Hydrogen Fuel Initiative”, May 2005
  13. 13. DOE’s Hydrogen Program Chalk, Steven, “DOE Hydrogen Program Overview” , $22 per hp
  14. 14. DOE’s Hydrogen Program Chalk, Steven, “DOE Hydrogen Program Overview”
  15. 15. DOE’s Hydrogen Program <ul><li>Energy Policy Act of 2005 </li></ul><ul><ul><li>7 Federally sponsored and funded programs for hydrogen-related activities (vehicles, fuel cells, storage, production, infrastructure) </li></ul></ul><ul><ul><ul><li>$509 million for FY 2006 </li></ul></ul></ul><ul><ul><ul><li>$567 million for FY 2007 </li></ul></ul></ul><ul><ul><ul><li>$663 million for FY 2008 </li></ul></ul></ul><ul><ul><ul><li>$745 million for FY 2009 </li></ul></ul></ul><ul><ul><ul><li>$899 million for FY 2010 </li></ul></ul></ul>President George Bush Signs the Energy Policy Act of 2005
  16. 16. California Hydrogen Highway
  17. 17. California Hydrogen Highway <ul><li>Governor’s Vision </li></ul><ul><ul><li>Every Californian has access to hydrogen along the State’s major highways by 2010 </li></ul></ul><ul><ul><li>Early network of 150 to 200 fueling stations (1 station every 20 miles) </li></ul></ul><ul><ul><li>Initial low-volume fueling network will cost $75 to $200 million </li></ul></ul><ul><ul><li>Station concentrations in LA, Sacramento, San Diego and San Francisco </li></ul></ul>California Governor Arnold Schwarzenegger
  18. 18. Illinois Hydrogen Highway <ul><li>Network of demonstration projects to promote hydrogen-based technologies </li></ul><ul><li>First conceived as part of the Illinois 2H2 report </li></ul><ul><li>Northwest Chicagoland International Airport in Rockford </li></ul><ul><ul><li>Combines solar, wind and hydrogen technologies for airport support vehicles </li></ul></ul><ul><ul><li>Heat and power for the airport building </li></ul></ul>Terminal at Northwest Chicagoland International Airport in Rockford, IL
  19. 19. Northern H Project <ul><li>Establish a multi-fuel hydrogen network in the upper Midwest </li></ul><ul><li>Produce and provide hydrogen made from wind, biomass, solar, hydro and coal resources </li></ul><ul><li>Place 9 or 10 stations 125 miles apart </li></ul><ul><li>Stations would link urban centers along Manitoba, the Dakotas, Minnesota, Iowa and Wisconsin and link up with the Illinois Hydrogen Highway </li></ul><ul><li>Project still not funded </li></ul>Northern H Project Hydrogen Highway
  20. 20. New York Hydrogen Highway
  21. 21. International Hydrogen Efforts <ul><li>Europe </li></ul><ul><ul><li>2 billion Euro hydrogen vision designed to bring hydrogen technologies closer to large scale commercial viability </li></ul></ul><ul><ul><li>Hydrogen supply based on renewable sources by 2050 </li></ul></ul><ul><ul><li>70 on-going R&D projects </li></ul></ul><ul><ul><li>Clean Urban Transport for Europe (CUTE) </li></ul></ul><ul><ul><ul><li>27 hydrogen powered buses serving 9 cities </li></ul></ul></ul><ul><ul><ul><li>Development of hydrogen infrastructure </li></ul></ul></ul>CUTE Transit Bus
  22. 22. European Hydrogen Production Shell Hydrogen Area covered by 100 km distribution around production site 800 km
  23. 23. International Hydrogen Efforts <ul><li>Iceland </li></ul><ul><ul><li>World’s first public commercial hydrogen fueling station in the Icelandic capital of Reykjavik </li></ul></ul><ul><ul><li>Ecological City Transport System (ECTOS) </li></ul></ul><ul><ul><ul><li>Operate a small fleet of hydrogen fuel cell buses that run on hydrogen produced by water </li></ul></ul></ul>Bramford, David, “Iceland Landmark Gas Station”, BBC News, April 2003 Hydrogen Fueling Station in Reykjavik, Iceland
  24. 24. International Hydrogen Efforts <ul><li>Japan </li></ul><ul><ul><li>Research fuel cell technologies since the 1980s </li></ul></ul><ul><ul><li>Created the Clean Energy Network Using Hydrogen Conversion in 1992 </li></ul></ul><ul><ul><ul><li>Goal to facilitate the commercialization of fuel cells </li></ul></ul></ul><ul><ul><ul><li>10 year program on hydrogen R&D </li></ul></ul></ul><ul><ul><ul><li>Replaced by the New Hydrogen Project </li></ul></ul></ul>Liquid Hydrogen Storage & Hydrogen Supply Facility Ariake, Japan
  25. 25. Japanese Hydrogen Production Shell Hydrogen Area covered by 100 km distribution around production site
  26. 26. International Hydrogen Efforts <ul><li>Canadian Hydrogen Highway </li></ul><ul><ul><li>Coincide with the 2010 Winter Olympic Games in Whistler, BC </li></ul></ul><ul><ul><li>Create small number of hydrogen stations by 2008 </li></ul></ul><ul><ul><li>Focal point between Vancouver International Airport, the City of Vancouver, and Whistler with branches connecting Victoria, North Vancouver, University of British Columbia and Surrey </li></ul></ul><ul><ul><li>Plan to link to similar projects in Alberta and California </li></ul></ul>
  27. 27. International Hydrogen Efforts <ul><li>International Energy Agency’s (IEA) Hydrogen Program </li></ul><ul><ul><li>Established in 1977 with 15 member countries </li></ul></ul><ul><ul><li>Global resource for technical expertise in hydrogen </li></ul></ul><ul><ul><li>Vision </li></ul></ul><ul><ul><ul><li>Hydrogen future based on a clean sustainable energy supply </li></ul></ul></ul><ul><ul><li>Mission </li></ul></ul><ul><ul><ul><li>Accelerate hydrogen implementation and widespread utilization </li></ul></ul></ul><ul><ul><li>Strategy </li></ul></ul><ul><ul><ul><li>Facilitate, coordinate, and maintain innovative RD&D through international cooperation and information exchange </li></ul></ul></ul>
  28. 28. International Hydrogen Efforts <ul><li>International Partnership for the Hydrogen Economy (IPHE) </li></ul><ul><ul><li>Purpose </li></ul></ul><ul><ul><ul><li>Provides a mechanism for partners to organize, coordinate and implement effective, efficient, and focused international research, development, demonstration and commercial utilization activities related to hydrogen and fuel cell technologies </li></ul></ul></ul><ul><ul><ul><li>provides a forum for advancing policies, and common technical codes and standards that can accelerate the cost-effective transition to a hydrogen economy </li></ul></ul></ul><ul><ul><ul><li>Educates and informs stakeholders and the general public on the benefits of, and challenges to, establishing the hydrogen economy </li></ul></ul></ul>International Partnership for the Hydrogen Economy
  29. 29. Hydrogen Basics <ul><li>Simplest, lightest, and most plentiful element (#1 on Periodic Table) </li></ul>
  30. 30. Hydrogen Basics <ul><li>Diffuses Rapidly </li></ul><ul><ul><li>Rises 2 times faster than helium and 6 times faster than natural gas (hydrogen will escape up and away from the user) </li></ul></ul><ul><ul><li>Dilutes quickly into a non-flammable concentration </li></ul></ul><ul><li>At room temperature, hydrogen is a very light gas </li></ul><ul><li>Colorless, odorless, tasteless, nonpoisonous gas </li></ul><ul><li>Will not contribute to groundwater pollution </li></ul><ul><li>Second lowest boiling and melting points of all substances, second to helium </li></ul><ul><ul><li>Liquid below its boiling point of 20K (-423  F, -253  C) </li></ul></ul><ul><ul><li>Solid below its melting point of 14K (-434  F, -259  C) </li></ul></ul>Hydrogen Molecule Nuclei 0K (“absolute zero”) is the lowest temperature in the universe at which molecular motion stops. Temperatures below -100  F are known as cryogenic temperatures and liquids below this temperature are cryogenic liquids
  31. 31. Hydrogen Basics <ul><li>Detectability </li></ul><ul><ul><li>Odorless, tasteless, and colorless </li></ul></ul><ul><ul><li>Sensors can be used to detect hydrogen in enclosed areas </li></ul></ul><ul><ul><li>No known odorants, such as mercaptans and thiophanes (as used in natural gas), can be used with hydrogen since the sulfur contaminate fuel cells </li></ul></ul><ul><li>Toxicity </li></ul><ul><ul><li>Non-toxic and nonpoisonous; does not create “fumes” </li></ul></ul><ul><li>Asphyxiation </li></ul><ul><ul><li>Hydrogen is of no more concern than other gases </li></ul></ul><ul><ul><li>In open areas, hydrogen disperses rapidly </li></ul></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001
  32. 32. Hydrogen Leakage Natural Resources Canada, “Transforming the Future: Moving Toward Fuel Cell-Powered Fleets in Canadian Urban Transit Systems”, February 2005 Molecular Weight Density of Gas (lb/ft 3 ) Viscosity of Gas at NTP (g/cm-s) Diffusion Coefficient in still air at NTP (cm 2 /s) Buoyancy (density relative to air) PROPERTY HYDROGEN METHANE PROPANE GASOLINE 2.02 16.04 44.06 ~107 5.2*10 -3 0.04 0.12 0.27 8.9*10 -5 11.17*10 -5 8*10 -5 5.2*10 -5 0.51 0.16 0.12 0.05 0.07 0.55 1.52 3.4-4.0
  33. 33. Hydrogen Dissipation Hydrogen Natural Gas Propane Gasoline Diesel Air Fuel Diffusion Coefficient in Air Vapor Density at NTP (lb/ft 3 ) Buoyancy in Air at NTP Vapor Density at NBP (lb/ft 3 ) Buoyancy in Air at NBP Rank in Confined/ Unconfined Areas 0.61 0.16 0.12 0.05 <0.10 Positive Positive Negative Negative Negative Negative Negative Negative Negative Negative Level 5/1 Level 4/1 Level 2/3 Level 1/4 Level 1/5 0 0 Unknown 0 Unknown Negative 0 0.0052 0.04 0.12 0.27 0.44 0.07 Natural Resources Canada, “Transforming the Future: Moving Toward Fuel Cell-Powered Fleets in Canadian Urban Transit Systems”, February 2005 Level 1 – low, Level 2 – minor, Level 3 – moderate, Level 4 – high, Level 5 – severe Relative Dissipation Hazard of Hydrogen
  34. 34. Hydrogen Combustion Properties <ul><li>Energy Content of Comparative Fuels </li></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001
  35. 35. Hydrogen Combustion Properties <ul><li>Energy Density of Comparative Fuels </li></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001
  36. 36. Hydrogen Combustion Properties <ul><li>Flashpoint of Comparative Fuels </li></ul><ul><li>Explosions </li></ul><ul><ul><li>An oxidizer, like oxygen must be present </li></ul></ul><ul><ul><li>Little chance to explode in air due to its buoyancy </li></ul></ul><ul><ul><li>Cannot occur in a tank or contained location that only contains hydrogen </li></ul></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001
  37. 37. Hydrogen Combustion Properties <ul><li>Wide Range of Flammability </li></ul><ul><ul><li>Hydrogen can be combusted in a wide range of AFRs (34:1 to 180:1) </li></ul></ul><ul><ul><li>Stoichiometry – 14.7:1 for gasoline, 34:1 for hydrogen </li></ul></ul><ul><ul><li>Can run on a lean mixture (better fuel economy and more complete combustion) </li></ul></ul><ul><ul><li>Lean mixture can reduce power output of the engine </li></ul></ul><ul><ul><li>Lower combustion temperatures result in lower NOx levels </li></ul></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001
  38. 38. Hydrogen Combustion Properties <ul><li>Handling </li></ul><ul><ul><li>Can be handled as safely as any other fuel </li></ul></ul><ul><ul><li>Different combustion properties than gasoline or diesel </li></ul></ul>College of the Desert, “Module 1, Hydrogen Properties”, Revision 0, December 2001 Octane Numbers of Comparative Fuels
  39. 39. Hydrogen Combustion Properties <ul><li>Low Radiant Heat </li></ul><ul><ul><li>Significantly less radiant heat than a hydrocarbon fire </li></ul></ul><ul><ul><li>Due to low levels of heat near the flame, risk of secondary fire is lower </li></ul></ul>Hydrogen Flames Hydrocarbon Flames
  40. 40. Module 1, “Hydrogen Basics”