Your SlideShare is downloading. ×
0
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Interferometric Spectral Line Imaging Martin Zwaan
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Interferometric Spectral Line Imaging Martin Zwaan

249

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
249
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Interferometric Spectral Line Imaging <ul><li>Martin Zwaan </li></ul><ul><ul><li>(Chapters 11+12 of synthesis imaging book) </li></ul></ul>
  • 2. Topics <ul><li>Calibration </li></ul><ul><li>Gibbs phenomenon </li></ul><ul><li>Continuum subtraction </li></ul><ul><li>Flagging </li></ul><ul><li>First reduction steps </li></ul><ul><li>After imaging: B ärbel’s talk </li></ul>
  • 3. Why Spectral Line Interferometry? <ul><li>Spectroscopy </li></ul><ul><ul><li>Important spectral lines </li></ul></ul><ul><ul><ul><li>HI hyperfine line </li></ul></ul></ul><ul><ul><ul><li>Recombination lines </li></ul></ul></ul><ul><ul><ul><li>Molecules (CO, OH, H 2 O, masers) </li></ul></ul></ul><ul><ul><li>Calculate column densities (physical state of ISM) and line widths (rotation of galaxies) </li></ul></ul><ul><li>Continuum </li></ul><ul><ul><li>Reduce bandwidth smearing </li></ul></ul><ul><ul><li>Isolate RFI </li></ul></ul>
  • 4. Calibration <ul><li>Continuum data: determine complex gain solutions as function of time </li></ul><ul><li>Spectral line data: same, but also function of  </li></ul><ul><li>Bandpass: complex gain as function of frequency </li></ul><ul><li>Factors that affect the bandpass: </li></ul><ul><ul><li>Front-end system, IF transmission system (VLA 3 MHz ripple) , back-end filters, Correlator, atmosphere, standing waves </li></ul></ul><ul><li>Different for all antennas </li></ul><ul><li>Usually not time-dependent </li></ul>
  • 5. &nbsp;
  • 6. Calibration <ul><li>Determine bandpass B i,j (  ) once per observation </li></ul><ul><li>Pcal-Scal-target-Scal-target-Scal-… </li></ul><ul><li>Pcal: strong (point) source with known S (  ), observe at same  as target </li></ul><ul><li>Observe Pcal more often for high spectral DR </li></ul><ul><li>Observe long enough so that uncertainties in BP do not contribute significantly to image </li></ul>Peak continuum/ rms noise image
  • 7. Calibration procedure <ul><li>Create pseudo-continuum (inner 75% of channels) </li></ul><ul><li>Determine complex gains G i,j ( t ) </li></ul><ul><li>Determine B i,j (  ) </li></ul><ul><li>Effects of atmosphere and source structure are removed by dividing by pseudo-continuum </li></ul><ul><li>N unknowns, N ( N -1)/2 measurables </li></ul><ul><li>Compute separate solution for every observation of Pcal </li></ul>
  • 8. Check bandpass calibration <ul><li>Smooth variation with frequency </li></ul><ul><li>Apply BP solution to Scal: should be flat </li></ul><ul><li>Compare BP solutions of different scans (for all antennas) </li></ul>
  • 9. Gibbs Phenomenon <ul><li>Wiener-Khintchine theorem: Spectral content I(  ) of stationary signal is Fourier transform of the time cross-correlation function R(  ) </li></ul><ul><ul><li>Need to measure R(  ) from -  to  ! </li></ul></ul><ul><ul><li>In practice: only measure from -N/2B to N/2B </li></ul></ul><ul><ul><li> Multiply R(  ) with a window function (uniform taper) </li></ul></ul><ul><ul><li>In  domain: I(  ) convoluted with sinc(x) </li></ul></ul><ul><ul><li>Nulls spaced by channel separation </li></ul></ul><ul><ul><li>Effective resolution: 1.2 times channel separation </li></ul></ul><ul><ul><li>-22% spectral side lobes </li></ul></ul>
  • 10. &nbsp;
  • 11. Solutions <ul><li>Observe with more channels than necessary </li></ul><ul><li>Remove first channels </li></ul><ul><li>Tapering sharp end of lag spectrum R(  ) </li></ul><ul><ul><li>Hanning smoothing: f(  )=0.5+0.5 cos (  /T) </li></ul></ul><ul><ul><li>In frequency space: multiplying channels with </li></ul></ul><ul><ul><li>0.25, 0.5, 0.25 </li></ul></ul><ul><ul><li>After Hanning smoothing: </li></ul></ul><ul><ul><li>Effective resolution: 2.0 times channel separation </li></ul></ul><ul><ul><li>-3% spectral side lobes </li></ul></ul>
  • 12. Continuum Subtraction <ul><li>Every field contains several continuum sources </li></ul><ul><li>Separate line and continuum emission </li></ul><ul><li>Two basic methods: </li></ul><ul><li>Subtract continuum in map domain ( IMLIN ) </li></ul><ul><li>Subtract continuum in UV domain ( UVSUB , UVLIN ) </li></ul><ul><li>Know which channels are line free </li></ul><ul><li>Use maximum number of line free channels </li></ul><ul><li>Iterative process </li></ul>
  • 13. Continuum Subtraction
  • 14. IMLIN <ul><li>Fit low-order polynomials to selected channels (free from line emission) at every pixel in image cube and subtract the appropriate values from all channels </li></ul><ul><li>Don&apos;t have to go back to uv data </li></ul><ul><li>Can&apos;t flag data </li></ul><ul><li>Clean continuum in every channel </li></ul><ul><ul><li>Time consuming </li></ul></ul><ul><ul><li>Non-linear: noisy data cube </li></ul></ul><ul><ul><li>Noisy continuum map </li></ul></ul>
  • 15. UVLIN <ul><li>Linear fits to real and imaginary components versus channel number for each visibility and subtracts the appropriate values from all channels </li></ul><ul><li>Visibilities: </li></ul><ul><li>V=cos (2  bl/c) + i sin (2  bl/c) </li></ul>b·l small b·l large Baseline length Distance from phase center
  • 16. UVLIN (cont’d) <ul><li>Allows to shift visibilities to move single strong source to image center  do fitting  shift back </li></ul><ul><li>No need to deconvolve continuum sources in all channels (deconvolution is non-linear) </li></ul><ul><li>Yields better continuum image </li></ul><ul><li>Fast </li></ul><ul><li>Allows flagging (remove baselines with high residuals) </li></ul><ul><li>Corrects for spectral slope </li></ul><ul><li>Only works for restricted field of view </li></ul>
  • 17. UVSUB <ul><li>Subtract Fourier transform of specified model from visibility data set. Input model may consist of the CLEAN components, input images, or specified model </li></ul><ul><li>Works well for strong sources far away from phase center </li></ul><ul><li>Non-linear: introduces errors in maps </li></ul><ul><li>Slow! </li></ul>
  • 18. A procedure for continuum subtraction <ul><li>Make large continuum map to find far field sources </li></ul><ul><li>UVLIN on large number of channels </li></ul><ul><li>Do Fourier transform and find line emission </li></ul><ul><li>Look for artifacts from strong continuum sources </li></ul><ul><li>Use UVLIN if one source dominates </li></ul><ul><li>Use UVSUB if many sources dominate, then UVLIN </li></ul><ul><li>Quality of continuum subtraction depends on quality of bandpass calibration </li></ul>
  • 19. Flagging of Spectral Line Data <ul><li>Remove interfering signals from sun, satellites, TV, radio, mobile phones, etc </li></ul><ul><li>Remove corrupted data due to equipment problems </li></ul><ul><li>Edit program sources and calibrators! </li></ul><ul><li>Time consuming for many channels, many baselines </li></ul><ul><li>First check pseudo-continuum </li></ul><ul><li>Try UVLIN </li></ul><ul><li>Try to maintain similar uv coverage in all channels </li></ul>
  • 20. Basic Reduction Steps <ul><li>Read data </li></ul><ul><li>Check quality and edit (flag) </li></ul><ul><li>Make pseudo-continuum </li></ul><ul><li>Determine gain solutions </li></ul><ul><li>Determine bandpass </li></ul><ul><li>Split off calibrated program source </li></ul><ul><li>Subtract continuum </li></ul><ul><li>Make image cube </li></ul>

×