• Like
  • Save
Intro To The Solar System 2010
Upcoming SlideShare
Loading in...5
×
 

Intro To The Solar System 2010

on

  • 5,292 views

 

Statistics

Views

Total Views
5,292
Views on SlideShare
5,230
Embed Views
62

Actions

Likes
3
Downloads
220
Comments
0

1 Embed 62

http://www.slideshare.net 62

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • The orbital inclination is the angle between a planet’s orbit and the ecliptic.

Intro To The Solar System 2010 Intro To The Solar System 2010 Presentation Transcript

  • Introduction to the Solar System The bright star Antares embedded in dust and gases
  • Origin of the Solar System
    • Modern astronomers believe that the sun and planets condensed out of a nebula or large cloud of gas and dust.
    • This idea is named the Nebular Hypothesis. It was first presented by the German philosopher Immanuel Kant in the late 1700’s.
    • Such clouds have been observed around stars other than our sun (e.g., Beta Pictoris)
  • The Formation of the Solar System Our solar system began as a rotating gas cloud or nebula that collapsed toward its center under the influence of gravity. A condensation formed at the center, which is called a protostar. A flattened disk of matter surrounded the protostar, which begtan to shine and become a star, our sun.
  • The Formation of our Solar System
    • The rising temperature from the sun removed the gas from the inner regions, leaving dust and larger debris
      • Inner planets formed from solid debris
      • Outer planets retained original gases
    Planets established dominance in their regions of the solar system. After almost all of the remaining gas, dust, and small debris was collected by the larger objects, the solar system took on the form we recognize today.
  • Other Star Systems Forming
    • We can look at young star systems developing today.
    • The planets orbiting these stars are formed from the surrounding disks of gas and dust, called protoplanetary disks or proplyds.
    Proplyd in the Orion Nebula
  • Beta Pictoris
    • May represent new solar system in formation
    • Disk of gas, dust seen edge-on, star Beta in center (covered to reveal faint outer disk)
  • Solar System Composite http://www2.jpl.nasa.gov/galileo/sepo/education/nav/ss2.gif
    • Mercury
    • Venus
    • Earth
    • Mars
    • Jupiter
    • Saturn
    • Uranus
    • Neptune
  • Common Properties of Planet Orbits in Our Solar System As viewed from above, all of the planets orbit the Sun in a counterclockwise direction. The planets orbit in nearly the same plane (ecliptic). All planets except Pluto have an orbital inclination of less than 7°.
  • Inner Solar System http://www.nineplanets.org/overview.html
  • Outer Solar System http://www.nineplanets.org/overview.html
  • Pluto’s Odd Orbit
    • Pluto’s orbit, or plane of revolution, is tilted by 17 ° to the general solar system orbits (ecliptic)
    • Pluto can also cut across Neptune’s orbit (but they can never collide)
  • Ecliptic Plane
    • Plane of the Ecliptic : The orbits of the planets are mostly in the same plane.
    • This plane is called the ecliptic and is defined by the plane of the earth’s orbit.
    • The exception is Pluto, which is tilted quite a bit in comparison to the rest of the planets.
    • The ecliptic plane is a remnant of the original, rotating nebular disk that formed the sun and planets
  • Ecliptic: Artist’s View
  • Motions
    • Directions of Motion : The planets orbit in a counterclockwise direction around the sun (when looking down upon the solar system from the sun’s north pole).
    • All the planets, except for Venus, Uranus, and Pluto, rotate in the same direction as their orbits.
  • SS Revolution
    • All planets revolve counter-clockwise when viewed from above
  • Orbits
    • The planets nearest to the Sun (Mercury, Venus, Earth, and Mars) are relatively close together, while those farther away (Jupiter, Saturn, Uranus, and Neptune) are more spread out.
    • Most of the planets are in nearly circular orbits.
  • Solar System Orbits (AU)
    • The astronomical unit (AU) is useful in measuring distances in the solar system
    • One AU equals the average earth-to-sun distance of 93 million miles
    • AU distances allow direct comparison to the earth which is equal to 1.0
    Planet Distance in AU Mercury 0.4 Venus 0.7 Earth 1.0 Mars 1.5 Jupiter 5.2 Saturn 9.5 Uranus 19.2 Neptune 30 Pluto 39.5
  •  
  • Revolutions of the Planets*
    • Mercury 88 days
    • Venus 224.7 days
    • Earth 365.25 days
    • Mars 1.88 years
    • Jupiter 11.86 years
    • Saturn 29.5 years
    • Uranus 84 years
    • Neptune 164.79 years
    • Pluto 248.32 years
    *Earth days and years
  •  
  • Diameters Planet Diameter (Earth = 1) Mercury 0.38 Venus 0.95 Earth 1.0 Mars 0.53 Jupiter 11.21 Saturn 9.45 Uranus 4.01 Neptune 3.88 Pluto 0.18
  •  
  • Masses Planet Mass (Earth = 1) Mercury 0.06 Venus 0.81 Earth 1.0 Mars 0.11 Jupiter 317.94 Saturn 95.18 Uranus 14.53 Neptune 17.14 Pluto 0.002
  •  
  • Average Density (kg/m 3 ) Planet Average Density (kg/m 3 ) Mercury 5430 Venus 5250 Earth 5520 Mars 3950 Jupiter 1330 Saturn 690 Uranus 1290 Neptune 1640 Pluto 2030
  •  
  • Rotational Period Planet Days (Earth  1) Mercury 58.6462 Venus 243.0187 Earth 0.99727 Mars 1.025957 Jupiter 0.41354 Saturn 0.42637 Uranus 0.71806 Neptune 0.67125 Pluto 6.3872
  •  
  • Average Temperature Planet Ave Temp ( ° F) Mercury 354 ° Venus 867 ° Earth 45 ° Mars -81 ° Jupiter -186 ° Saturn -202 ° Uranus -337 ° Neptune -364 ° Pluto -380 °
  • Average Temperature (Earth = 1)
  • Sizes of the Planets
    • In mass, the sun represent 99% of the solar system
    • The smallest planet, Mercury, has a diameter of 3031 mi
    • Pluto, the previous smallest planet, has a diameter of 1457 mi
    • The largest planet, Jupiter, has a diameter of 88,700 mi
    • Earth = 7926 mi
    • Ganymede, the largest moon of Jupiter, is larger than Mercury, yet Ganymede is not considered a planet because it revolves around Jupiter
    http://www.nineplanets.org/datamax.html
  • Two Basic Groups of Planets TERRESTRIAL (earth-like) Small size, low Mass Higher density Mostly rock Mercury, Venus, Earth, Mars JOVIAN (Jupiter-like) Large size, massive Low density Mostly gas Jupiter, Saturn, Uranus, Neptune
  • Classifications
    • Terrestrial or Rocky planets —Composed of rock and metal: Mercury, Venus, Earth, Mars
    • Jovian or Gas planets —Composed primarily of the gases hydrogen and helium: Jupiter, Saturn, Uranus, Neptune
  • Classification, cont.
    • Small Planets —Diameters less than 13,000 km: Mercury, Venus, Earth, Mars
    • Giant Planets (Gas Giants) —Diameters greater than 48,000 km: Jupiter, Saturn, Uranus, Neptune
  • Classification, cont.
    • Inner Planets —Mercury, Venus, Earth, Mars
    • Outer Planets —Jupiter, Saturn, Uranus, Neptune
  • Classification, cont.
    • Inferior —Closer to the sun than earth: Mercury and Venus
    • Superior —Farther from the sun than earth: Mars, Jupiter, Saturn, Uranus, Neptune
  • Classification, cont.
    • Classical —Known since prehistoric times, visible to the unaided eye: Mercury, Venus, Mars, Jupiter, Saturn
    • Modern —Discovered in modern times, visible only with telescopes: Uranus, Neptune, (Pluto)
  • Classification Table Planet Rocky or Gas? Small or Giant? Inner or Outer? Inferior or Superior? Classical or Modern? Mercury R S I I C Venus R S I I C Earth R S I N/A ? Mars R S I S C Jupiter G G O S C Saturn G G O S C Uranus G G O S M Neptune G G O S M Pluto ? S O S M
  • New Solar System (> 2006)
    • Planets :
      • Mercury
      • Venus
      • Earth
      • Mars
        • Ceres (dwarf)
      • Jupiter
      • Saturn
      • Uranus
      • Neptune
        • Pluto (dwarf)
        • Eris (dwarf)
        • Makemake (dwarf)
    Eris
    • Two Categories: Planets and Dwarf Planets (dwarfs beyond Neptune are “Plutoids”)
    • Today’s astronomers recognize only 8 planets
  • Solar System Model
    • If the sun were an orange, the earth would be a grain of sand thirty feet away.
    • Jupiter would be a cherry pit located one block from the sun.
    • Saturn would be another cherry pit located one block from Jupiter.
    • Pluto would be a grain of sand 10 blocks from the sun.
    • The nearest star to our sun (Alpha Centauri) would be represented as another orange 2000 miles from the sun.
  • Planet Names
    • The planets have been given the Roman names of gods from ancient Greece.
    • Roman
    • Mercury, Venus, Mars, Jupiter, Saturn
    • Greek
    • Hermes, Aphrodite, Ares, Zeus , Kronos
    • The modern planets, Uranus, Neptune, and Pluto, are also Roman gods
    Jupiter from Fantasia (Disney)