Your SlideShare is downloading. ×
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Calc03 9
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Calc03 9

311

Published on

gggg

gggg

Published in: Travel, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
311
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 3.9: Derivatives of Exponential and Logarithmic Functions Mt. Rushmore, South Dakota
  • 2. Look at the graph of The slope at x=0 appears to be 1. If we assume this to be true, then: definition of derivative
  • 3. Now we attempt to find a general formula for the derivative of using the definition. This is the slope at x=0, which we have assumed to be 1.
  • 4.  
  • 5. is its own derivative! If we incorporate the chain rule: We can now use this formula to find the derivative of
  • 6. (chain rule) ( and are inverse functions.)
  • 7. Incorporating the chain rule: ( is a constant.)
  • 8. So far today we have: Now it is relatively easy to find the derivative of .
  • 9.  
  • 10. To find the derivative of a common log function, you could just use the change of base rule for logs: The formula for the derivative of a log of any base other than e is:
  • 11.

×