www.AulasEnsinoMedio.com.br - - Matemática - Determinantes

747 views
713 views

Published on

Matemática - VideoAulas Sobre Determinantes – Faça o Download desse material em nosso site. Acesse www.AulasEnsinoMedio.com.br

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
747
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
66
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

www.AulasEnsinoMedio.com.br - - Matemática - Determinantes

  1. 1. E I T E R N A N T E M D Determinante
  2. 2. O que você sabe sobre determinante?
  3. 3. Para aproveitar 100% dessa aula você precisa saber:  Matrizes  Equação do 1º  Equação do 2º grau
  4. 4. Como representamos oComo representamos o determinantedeterminante de umade uma matriz?matriz? Colocando os elementos de uma matrizColocando os elementos de uma matriz entre duasentre duas barras verticaisbarras verticais.. Exemplos:Exemplos: 04 21 04 21 =⇒      = ADetA 355 102 041 355 102 041 =⇒           = BDetB
  5. 5. Como calculamos o determinante de uma matriz quadrada?  Se for uma matriz de ordem 1, então o determinante é o próprio elemento da matriz. Exemplo: ( ) 44det4 −=−=⇒−= AA
  6. 6.  Se for uma matriz de ordem 2, então o determinante é a diferença entre o produto dos elementos da matriz principal e o produto dos elementos da matriz secundária. Exemplo: 01 32 det 01 32 =⇒      = AA 31.30.2 −=−
  7. 7. Tente fazer sozinho!Tente fazer sozinho! (UF-PI) Sejam(UF-PI) Sejam Se det A = 4 e det B = 2, então, x + y éSe det A = 4 e det B = 2, então, x + y é igual a:igual a: a) 2a) 2 b) 3b) 3 c) 4c) 4 d) 5d) 5 e) 6e) 6       =      − = 112 1 yx Be y x A
  8. 8. SoluçãoSolução 3x = 63x = 6 x = 2x = 2 424)(2 4 2 1 det =+⇒=−− = − = yxyx y x A 2 2 11 det =− == yx yx B ⇒    =− =+ ⇒    =− =+ 2 42 2 42 yx yx yx yx x - y = 2x - y = 2 2 - y = 22 - y = 2 y = 0y = 0 Logo, x + y = 2 + 0 = 2 Resposta: letra A.
  9. 9.  Se for uma matriz de ordem 3, então o determinante é calculado através da Regra de Sarrus.
  10. 10. Exemplo: det A = 10 – 4 + 0 + 6 + 0 – 12 det A = 0
  11. 11. Tente fazer sozinho!Tente fazer sozinho! (Cefet-MG) O(s) valor(es) de x para que(Cefet-MG) O(s) valor(es) de x para que é(são):é(são): a) -1 b) 1 c) 3 d) -1 e 1 e) -1 e 3a) -1 b) 1 c) 3 d) -1 e 1 e) -1 e 3 8 32 10 21 −= −− − x x x
  12. 12. SoluçãoSolução -2 + 6x -2x -2x2 =-8 -2x2 + 4x -10 = 0 As raízes são -1 e 3. Resposta: letra E. 8 32 10 21 −= −− − x x x 8 32 10 21 −= −− − x x x 1 x 2 0 -2x 6x-20 -2x2 -2x0
  13. 13. Propriedades dos determinantes 1ª) Se todos os elementos de uma fila (linha ou coluna) de uma matriz quadrada forem iguais a zero, o determinante dessa matriz também será zero. Exemplo: 0det 5009 2703 0302 1401 =⇒               = AA
  14. 14. 2ª) Se os elementos correspondentes de duas filas (duas linhas ou duas colunas) de uma matriz forem iguais, o determinante dessa matriz será zero. Exemplo: 0det 5019 0352 0372 1401 =⇒               = AA
  15. 15. 3ª) Se duas filas (duas linhas ou duas colunas) de uma matriz forem proporcionais, o determinante dessa matriz será zero. Exemplo: 0det 6013 4372 4372 2401 =⇒               = AA
  16. 16. 4ª) Se trocamos duas filas (duas linhas ou duas colunas) de posição, o determinante da nova matriz será o oposto da matriz anterior. Exemplo:           −− =           −− = 201 521 310 201 310 521 BeA det A = det A = 5 + 2 + 6 = 13, então det B = -13
  17. 17. Exemplo:           −− =           −− = 201 521 1563 201 310 521 BeA det A = det A = 5 + 2 + 6 = 13, então det B = 39 5ª) Se todos os elementos de uma fila (linha ou coluna) forem multiplicados por um mesmo número, então o determinante também fica multiplicado por esse número.
  18. 18. 6ª) Se uma matriz quadrada for multiplicada por um número real, então o determinante fica multiplicado por esse número elevado a ordem da matriz. Exemplo:           −− =           −− =           −− = 402 620 1042 201 310 521 2 201 310 521 BeA det A = 13, então det B = 13. 23 = 104
  19. 19. 7ª) O determinante de uma matriz quadrada é igual ao determinante da sua transposta. Exemplo:           −− = 201 310 521 A det A = 13, então det At = 13
  20. 20. 8ª) O determinante de uma matriz triangular é igual ao produto dos elementos da diagonal principal. Exemplo:           − = 200 310 521 A det A = 1.1.(-2) = -2
  21. 21. 9ª) Teorema de Binet Sendo duas matrizes A e B duas matrizes quadradas de mesma ordem e AB a matriz produto, então det(AB) = (det A) (det B). Exemplo:       =      − = 43 20 15 23 BeA det A . det B = (-3 -10)(0 - 6) = 78 784236)det( 63 146 =+=⇒      − = ABAB
  22. 22. Tente fazer sozinho! (UFC-CE) Sejam A e B matrizes 3x3 tais que det A = 3 e det B = 4. Então, det (A . 2B) é igual a: a) 32 b) 48 c) 64 d) 80 e) 96
  23. 23. Solução det A = 3 e det B = 4 Pelo Teorema de Binet temos que: det(A . 2B) = det A . det 2B E pela 6ª propriedade temos que: det 2B = 4 . 23 = 32 Logo, det(A . 2B) = 3 . 32 = 96  letra E.
  24. 24. e A-1 sua inversa. Então, Exemplo:         − =      − = − 2 11 2 10 02 11 1 AeA 2 1 det,220det 1 ==+= − AentãoA A A det 1 det 1 =− 10ª) Seja A uma matriz quadrada invertível
  25. 25. Tente fazer sozinho! (Cefet-PR) Uma matriz A quadrada, de ordem 3, possui determinante igual a 2. O valor de det (2 . A-1 ) é: a) 1 b) 2 c) 3 d) 4 e) 5
  26. 26. Solução det A = 2 Pela 10ª propriedade temos que: Pela 6ª propriedade temos que: det 2.A-1 = 1/2 . 23 = 4 Logo, det (2 . A-1 ) = 4  letra D. 2 1 det det 1 det 11 =⇒= −− A A A
  27. 27. Teorema de La PlaceTeorema de La Place Dada uma matriz quadrada de ordem n > 1, oDada uma matriz quadrada de ordem n > 1, o determinantedeterminante da matriz A será oda matriz A será o númeronúmero real quereal que se obtémse obtém somando-se os produtos dos elementossomando-se os produtos dos elementos de uma filade uma fila (linha ou coluna) qualquer(linha ou coluna) qualquer pelospelos seusseus respectivosrespectivos cofatorescofatores.. Esse teorema nos permite calcular o determinanteEsse teorema nos permite calcular o determinante de matrizes de ordem maior que 3.de matrizes de ordem maior que 3. Porém, antes vamos aprender os conceitosPorém, antes vamos aprender os conceitos dede CofatorCofator..
  28. 28. O que é Cofator de uma matriz? É o produto de (-1)i+j (sendo i e j o índice de um elemento) pelo determinante da matriz obtida quando eliminamos a linha e a coluna desse elemento. Exemplo: Considerando a matriz           − −−= 346 120 352 A
  29. 29. Vamos calcular os cofator c11.           − −−= 346 120 352 A C11 = (-1)1+1 . C11 = 1.[-2 .(-3) - (-1). 4] = 6 + 4 = 10 34 12 − −−
  30. 30. Vamos calcular os cofator c23.           − −−= 346 120 352 A C23 = (-1)2+3 . C23 = -1.[2 .4 – 5 . 6] = -1. (8 - 30)= -1(-22) = 22 46 52
  31. 31. Teorema de La PlaceTeorema de La Place Dada uma matriz quadrada de ordem n > 1,Dada uma matriz quadrada de ordem n > 1, oo determinantedeterminante da matriz A será oda matriz A será o númeronúmero realreal que se obtémque se obtém somando-se os produtos dossomando-se os produtos dos elementos de uma filaelementos de uma fila (linha ou coluna)(linha ou coluna) qualquerqualquer pelospelos seus respectivosseus respectivos cofatorescofatores.. Exemplo: Considerando a matriz           − −−= 346 120 352 A
  32. 32.           − −−= 346 120 352 A C21 = (-1)2+1 . = -1.[5 .(-3) – 3 . 4] = 27 C22 = (-1)2+2 . = 1.[2 .(-3) - (3. 6)] = -24 C23 = (-1)2+3 . = -1.[2 . 4 - 5. 6)] = 22 34 35 − 36 32 − 46 52 Vamos calcular o determinante usando da segunda linha.
  33. 33. Pelo Teorema de La Place é: det A = 27.0 + (-24).(-2) + 22.(-1) det A = 0 + 48 - 22 det A = 26.           − −−= 346 120 352 A Então, o cálculo do determinante da matriz
  34. 34. O que você aprendeu:  Como representar e calcular um determinante.  Regra de Sarrus.  As propriedades dos determinantes.  Teorema de La Place.
  35. 35. Bibliografia  Dante, Luiz Roberto – Matemática Contexto e Aplicações. 3ª edição – 2008. Editora Ática – SP. Páginas: 146 a 174.  Iezzi, Gelson; Dolce, Osvaldo; Périgo, Roberto; Degenszajn, David – Matemática (volume único). 4ª edição – 2007. Editora Atual – SP. Páginas: 303 a 313.  Bianchini, Edwaldo; Paccola, Herval – Curso de Matemática. 3ª edição – 2003. Editora Moderna – SP. Páginas: 295 a 308.  http://www.somatematica.com.br/emedio/det erminantes/

×