SlideShare a Scribd company logo
1 of 39
Números Complexos
Ao final dessa aula você
                         saberá:
    O que é um número complexo e sua
    representação algébrica
    O que é um número imaginário puro e
    igualdade dos complexos
    O que é conjugado
    As potências de i
    A representação trigonométrica de um número
    complexo
    As operações matemática na forma algébrica e
    na forma trigonométrica
O que é um número
                    complexo?
      É todo número z escrito na forma a + bi,
    sendo “a” a parte real e “bi” a parte
    imaginária. Também é chamado de número
    imaginário.
                      Formalmente,
                   escrevemos a parte
Exemplos:          real assim: Re(z) =
                            a.
 z = 3 + 5i       E a parte imaginária
                     assim: Im(z) = b
 z = 7i

 z = ½ + 4i
O que é o “i”?

    É a unidade imaginária, sendo i2 = - 1.
Dessa forma podemos calcular o valor da
raiz de números negativos com índice par.

Exemplo:

  − 36 = (−1)(36) = 36i = 6i2
O que é um número
               imaginário puro?
 É um número complexo z = a + bi, cuja
parte real é igual a zero, ou seja, a = 0.

                Repare que um número
Exemplos:          real é um número
                 complexo, com a parte
 z = 3i        imaginária igual a zero.
z=i               Exemplo: 2+0i = 2

 z = -10i
Logo, temos que o conjuntos dos
    Números Reais é um subconjunto
        dos Números Complexos.
                     C


R
             Q      I
         Z
     N
Como sabemos se dois
                números complexos são
                       iguais?
 Sendo dois números complexos:
 z1 = a + bi e z2 = c + di, se a = c e b = d, então
 z1 = z2. Ou seja, dois complexos são iguais
 se as partes reais e imaginárias são iguais.
Exemplo:
Calcular o valor de x e y na equação:
3x + 7yi = 12 – 21i
           3x = 12  x = 4
           7y = -21  y = -3
Tente fazer sozinho!



Determine m e n reais de modo que
          m + (n-1)i = 3i
Solução


m + (n-1)i = 3i

m=0en–1=3 n=4
Como representamos o
                    conjugado de um número
                          complexo?
     Sendo o número complexo z = a + bi, seu
conjugado é representado por: z = a − bi

Exemplos:

                   z = 5 − 3i
   z = 5 + 3i 

   z = - 8i 
                 z = 8i
Como calculamos as
                      potências de i?
Usando as regras de potência já conhecidas.

 i0 =1                      Note que a partir do
                                expoente 4, os
i =i
   1
                             resultados começam
                                   a repetir.
 i2 = - 1

 i3 = i2 . i = (- 1) . i = - i

 i4 = i2 . i2 = (- 1) . (- 1) = 1

 i5 = i3 . i2 = (- i) . (- 1) = i
Exemplo:
(PUC-MG) O número complexo (1 + i) 10 é
igual a:
a) 32 b) -32 c) 32i d) -32i e) 32(1+i)

[(1 + i)2]5 = [1 + 2i + i2]5 = [1 + 2i - 1]5 =

[2i]5 = 32.i5 = 32i  letra C
Tente fazer sozinho!

(Vunesp) Se a, b, c são números inteiros
positivos tais que c = (a + bi)2 – 14i, em
que i2 = -1, o valor de c é:

a) 48 b) 36 c) 24 d) 14 e) 7
Solução
c = (a + bi)2 – 14i
c = a2 + 2abi + b2i2 – 14i = a2 + 2abi – b2 – 14i
c + 0i = (a2 – b2) + (2ab – 14)i
2ab – 14 = 0  ab = 7
Logo, a = 7 e b = 1 ou a = 1 e b = 7
Como c é positivo, temos que:
c = 72 – 12 = 49 – 1 = 48
Resposta: letra A.
Como somamos ou
                  subtraímos números
                      complexos?
  Basta somar (ou subtrair)as partes reais e as
partes imaginárias.

Exemplos:

   (3 + 4i) + (-13 + 7i) = -10 + 11 i

   (7 – 25i) – (- 5 – 5i) = 12 – 15i
Como multiplicamos
              números complexos?

Basta aplicar a propriedade distributiva.

Exemplo:

(5 + 2i) (2 + 3i) = 10 + 15i + 4i – 6 = 4 + 19i
Como dividimos
                 números complexos?
Basta multiplicar o numerador e o denominador
pelo conjugado do denominador.

Exemplo:
2 + 3i ( 2 + 3i )( 5 + 2i ) 10 + 4i + 15i − 6
       =                    =                 =
5 − 2i ( 5 − 2i )( 5 + 2i )      25 + 4
  4 + 19i 4 19
=        =      + i
     29     29 29
Tente fazer sozinho!
                                           x −1
                                           2
(Cefet-MG) O valor da expressão                   quando
                                           x −1
                                            3


x = i (unidade imaginária) é :

a) (i + 1) b) – (i – 1) c)      ( i + 1)
                                   2
d)   ( i − 1)   e)
                   − ( i − 1)
        2               2
Solução
x −1 i −1 −1 −1
 2         2
                  −2    2
    = 3  =      =     =
x −1 i −1 − i −1 −1− i 1+ i
 3




  2(1 − i )     2 − 2i 2(1 − i )
              =       =          = 1− i
1 + i (1 − i ) 1 + 1      2

Logo, a resposta é B, pois
– (i - 1) = -i +1 = 1-i
Como representamos um
                   número complexo no
                         gráfico?
  Basta representar a parte real no eixo x
e a parte imaginária no eixo y.
Exemplos: z1 = - 1 + 2i e z2 = 3i
                      y
                  P2      3

            P1            2

                          1

                               x
                 -1
O que é o módulo de
              um número complexo?
  É a distância entre a origem e o ponto que
corresponde a esse número.
  Sendo z = a + bi, temos: z = ρ
          y



         b

                ρ      P (a,b)



                                 x
                        a
Como calculamos o
                 módulo de um número
                     complexo?
Usando a fórmula z = ρ = a + b .
                                 2   2




Exemplo:       z = 1 + 3i


 z = 1 +   2
                ( 3)   2
                           = 1+ 3 = 4 = 2
Tente fazer sozinho!
(UFRRJ) Sendo a = 2 + 4i e b = 1 – 3i, o valor

     a
de     é:
     b


a) 3     b) 2    c) 5

d) 2 2      e) 1+ 2
Solução

  a a    2 +4    2   2
   = =              =
  b b  1 + ( − 3)
        2         2


   4 + 16   20   20
          =    =    = 2
   1+ 9     10   10
Resposta: letra B.
O que é argumento de um
             número complexo?
  É o ângulo que o módulo do número
faz com o eixo x.
   y                          b
                      senθ =
                              ρ
  b                           a
        ρ     P (a,b) cos θ =
                              ρ
      θ            x
             a
Tente fazer sozinho!

(URRN) Se z =
                (1 + i )   2
                               , então o argumento de z é:
                 1− i

a) – 135º b) – 45º c) 45º d) 90º e) 135º
Solução

z=
   (1 + i )=
               2
             1 + 2i − 1 2i
                       =
      1− i      1− i     1− i

    2i (1 + i )     2i − 2 2i − 2
=                 =       =       = −1 + i
  (1 − i )(1 + i ) 1 + 1     2

       b                            a
senθ =                  e   cos θ =
       ρ                            ρ
ρ=    ( − 1)   2
                   +1 = 1+1 = 2
                    2
( 2) =
                                  sen
       1               2
senθ =
        2    ( 2)     2
                           135º         45º




cos θ =
        −1   ( 2) = − 2                   cos


         2   ( 2) 2

Logo, o argumento é 135º.
Resposta: letra E.
Como escrevemos a forma
                  trigonométrica de um número
                          complexo?
                z = ρ ( cos θ + i senθ )
 Exemplo:   z = 2 3 + 2i
 ρ = a +b =
       2    2
                  (2 3 )   2
                               + 2 = 12 + 4 = 16 = 4
                                 2


        a 2 3    3
 cos θ = =    =   
        ρ  4    2 
                   ⇒ θ = 30º
        b 2 1     
 senθ = = =
        ρ 4 2     
                  
Logo, z = 4(cos 30º + i sen 30º)
Tente fazer sozinho!
(Cefet-PR) A forma algébrica do complexo
           7π        7π 
 z =3cos   +isen    :
                     é
         6       6 
          3 3 3
 a ) z =− −          i
          2     2
        3 3 3
 b) z = −         i
        2     2
          3 3     3
 c ) z =−      − i
            2     2
           3 3     3
 d ) z =−       + i
            2      2
        3 3     3
 e) z =       − i
          2     2
Solução
          7π        7π 
z = 3 cos    + isen    
           6         6 
                                     7π
z = ρ ( cos θ + isenθ ) ⇒ ρ = 3, θ =    = 210º
                                      6
                            3
cos 210º = − cos 30º = −
                           2
                         1
sen210º = − sen30º = −
                         2
a               b
  cos θ =          senθ =
          ρ               ρ
     3 a             1 b
  −   =            − =
    2    3           2 3
      3 3               3
  a=−              b=−
        2               2

                            3 3 3
Logo, a forma algébrica é −    − i
                             2  2
Resposta: letra C.
Como multiplicamos
                      complexos na forma
                         trigonométrica?
   z1.z 2 = ρ1.ρ 2 .[ cos(θ1 + θ 2 ) + isen(θ1 + θ 2 ) ]
Exemplo:
            π     π             π      π
 z1 = 2 cos + isen  e z2 = 3 cos + isen 
            3     3             2      2
              π π          π π 
 z1.z 2 = 2.3cos +  + isen + 
              3 2          3 2 
                5π       5π 
 z1.z 2 = 6 cos    + isen 
                 6        6 
Como dividimos
                     complexos na forma
                       trigonométrica?
        z1 ρ1
           =   [ cos(θ1 − θ 2 ) + isen(θ1 − θ 2 ) ]
        z2 ρ 2
Exemplo:
           π        π                 π          π
 z1 = 6 cos + isen  e z 2 = 3 cos + isen 
            2       2                  3         3
    z1 6   π π                  π π 
      = cos −  + isen − 
   z2 3   2 3                   2 3 
    z1        π      π
       = 2 cos + isen 
    z2        6      6
Como calculamos uma
                      potência complexos na
                       forma trigonométrica?
          z n = ρ n .[ cos( nθ ) + isen( nθ ) ]
Exemplo:
          π      π
 z = 2 cos + isen 
          3      3
          π            π 
 z = 2 cos 2.  + isen 2. 
  2   2

          3            3 
           2π        2π 
 z = 4 cos
  2
               + isen    
            3         3 
Tente fazer sozinho!
                                       6 + 6i
(UPF-RS) Quanto ao número complexo z =        ,
                                       1− i
a alternativa incorreta é:
a) Escrito na forma algébrica é z = 6i
b) O módulo de z é 6.
                      π
c) O argumento de z é   rad.
                      2
d) Escrito na forma trigonométrica tem-se:
         z = 6( cos π + i senπ )

e) z2 é um número real.
Solução
a) Escrito na forma algébrica é z = 6i
   6 + 6i ( 6 + 6i )(1 + i ) 6 + 6i + 6i − 6 12i
z=       =                   =              =    = 6i
   1− i     (1 − i )(1 + i )      1+1         2

b) O módulo de z é 6.


 z = 0 +6 = 6 =6
         2     2        2
6 + 6i
            z=
               1− i
                      π
c) O argumento de z é   rad.
                      2
       a 0   
cos θ = = = 0
       ρ 6                π
              ⇒ θ = 90º =
       b 6                 2
senθ = = = 1 
       ρ 6   
             
d) Escrito na forma trigonométrica
                            tem-se:
                  z = 6( cos π + i senπ )

z = ρ ( cos θ + isenθ ) = 6( cos 90º +isen90º )
e) z2 é um número real.
z n = ρ n [ cos( nθ ) + isen( nθ ) ] =
z 2 = 6 2 [ cos( 2.90º ) + isen( 2.90º ) ] =
z 2 = 36[ cos(180º ) + isen(180º ) ] =
z = 36[ − 1 + i.0] = −36
 2

Resposta: letra D.

More Related Content

What's hot

(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
Números complexos
Números complexosNúmeros complexos
Números complexos
Daniel Muniz
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
gomesloiola
 

What's hot (14)

Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
2006 _ap___m04___comp_pol_equa
2006  _ap___m04___comp_pol_equa2006  _ap___m04___comp_pol_equa
2006 _ap___m04___comp_pol_equa
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
www.AulasEnsinoMedio.com.br - Matemática -  Números Complexoswww.AulasEnsinoMedio.com.br - Matemática -  Números Complexos
www.AulasEnsinoMedio.com.br - Matemática - Números Complexos
 
Aula.número.complexo
Aula.número.complexoAula.número.complexo
Aula.número.complexo
 
Números Complexos Daniel Mascarenhas
Números Complexos   Daniel MascarenhasNúmeros Complexos   Daniel Mascarenhas
Números Complexos Daniel Mascarenhas
 
NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01NÚMEROS COMPLEXOS - PARTE 01
NÚMEROS COMPLEXOS - PARTE 01
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números Complexos - Representação Geométrica
Números Complexos - Representação GeométricaNúmeros Complexos - Representação Geométrica
Números Complexos - Representação Geométrica
 

Viewers also liked (15)

Números Complexos Resumo
Números Complexos ResumoNúmeros Complexos Resumo
Números Complexos Resumo
 
Datum.pdf
Datum.pdfDatum.pdf
Datum.pdf
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Dominó complexo
Dominó complexoDominó complexo
Dominó complexo
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
NúMeros Complexos Bom
NúMeros Complexos BomNúMeros Complexos Bom
NúMeros Complexos Bom
 
55730 8780 06.02.2014 19.09.11_aula00_numeroscomplexos
55730 8780 06.02.2014 19.09.11_aula00_numeroscomplexos55730 8780 06.02.2014 19.09.11_aula00_numeroscomplexos
55730 8780 06.02.2014 19.09.11_aula00_numeroscomplexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Resumo de matemática (números complexos e matrizes)
Resumo de matemática (números complexos e matrizes)Resumo de matemática (números complexos e matrizes)
Resumo de matemática (números complexos e matrizes)
 
Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Mat complexos exercicios resolvidos
Mat complexos exercicios resolvidosMat complexos exercicios resolvidos
Mat complexos exercicios resolvidos
 
Numeros complexos aula
Numeros complexos aulaNumeros complexos aula
Numeros complexos aula
 

Similar to www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos

Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14
comentada
 

Similar to www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos (17)

Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14Matematica 3 exercicios gabarito 14
Matematica 3 exercicios gabarito 14
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Exercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosExercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexos
 
Salva vidas WGS
Salva vidas WGSSalva vidas WGS
Salva vidas WGS
 
Operações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptxOperações envolvendo números complexos.pptx
Operações envolvendo números complexos.pptx
 
Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Lista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdfLista de exerc_revisão_complexos_2012_pdf
Lista de exerc_revisão_complexos_2012_pdf
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 

More from Beatriz Góes

More from Beatriz Góes (20)

www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios
 
www.AulasDeMatematicaApoio.com.br - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com.br - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun... www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun...
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de Trigonometria
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
 www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa... www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com.br - Matemática - Produto Notável
 www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável
www.AulasDeMatematicaApoio.com.br - Matemática - Produto Notável
 
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com.br - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com.br - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com.br - Matemática - Potenciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com.br - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e Pontos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
 www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
 
www.AulasDeMatematicaApoio.com.br - Matemática - Matrizes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes www.AulasDeMatematicaApoio.com.br  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com.br - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com.br  - Matemática - Logaritmo www.AulasDeMatematicaApoio.com.br  - Matemática - Logaritmo
www.AulasDeMatematicaApoio.com.br - Matemática - Logaritmo
 

Recently uploaded

PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
HELENO FAVACHO
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
TailsonSantos1
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 

Recently uploaded (20)

Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
Seminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptxSeminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptx
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 

www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos

  • 2. Ao final dessa aula você saberá:  O que é um número complexo e sua representação algébrica  O que é um número imaginário puro e igualdade dos complexos  O que é conjugado  As potências de i  A representação trigonométrica de um número complexo  As operações matemática na forma algébrica e na forma trigonométrica
  • 3. O que é um número complexo? É todo número z escrito na forma a + bi, sendo “a” a parte real e “bi” a parte imaginária. Também é chamado de número imaginário. Formalmente, escrevemos a parte Exemplos: real assim: Re(z) = a.  z = 3 + 5i E a parte imaginária assim: Im(z) = b  z = 7i  z = ½ + 4i
  • 4. O que é o “i”? É a unidade imaginária, sendo i2 = - 1. Dessa forma podemos calcular o valor da raiz de números negativos com índice par. Exemplo: − 36 = (−1)(36) = 36i = 6i2
  • 5. O que é um número imaginário puro? É um número complexo z = a + bi, cuja parte real é igual a zero, ou seja, a = 0. Repare que um número Exemplos: real é um número complexo, com a parte  z = 3i imaginária igual a zero. z=i Exemplo: 2+0i = 2  z = -10i
  • 6. Logo, temos que o conjuntos dos Números Reais é um subconjunto dos Números Complexos. C R Q I Z N
  • 7. Como sabemos se dois números complexos são iguais? Sendo dois números complexos: z1 = a + bi e z2 = c + di, se a = c e b = d, então z1 = z2. Ou seja, dois complexos são iguais se as partes reais e imaginárias são iguais. Exemplo: Calcular o valor de x e y na equação: 3x + 7yi = 12 – 21i 3x = 12  x = 4 7y = -21  y = -3
  • 8. Tente fazer sozinho! Determine m e n reais de modo que m + (n-1)i = 3i
  • 9. Solução m + (n-1)i = 3i m=0en–1=3 n=4
  • 10. Como representamos o conjugado de um número complexo? Sendo o número complexo z = a + bi, seu conjugado é representado por: z = a − bi Exemplos: z = 5 − 3i  z = 5 + 3i   z = - 8i  z = 8i
  • 11. Como calculamos as potências de i? Usando as regras de potência já conhecidas.  i0 =1 Note que a partir do expoente 4, os i =i 1 resultados começam a repetir.  i2 = - 1  i3 = i2 . i = (- 1) . i = - i  i4 = i2 . i2 = (- 1) . (- 1) = 1  i5 = i3 . i2 = (- i) . (- 1) = i
  • 12. Exemplo: (PUC-MG) O número complexo (1 + i) 10 é igual a: a) 32 b) -32 c) 32i d) -32i e) 32(1+i) [(1 + i)2]5 = [1 + 2i + i2]5 = [1 + 2i - 1]5 = [2i]5 = 32.i5 = 32i  letra C
  • 13. Tente fazer sozinho! (Vunesp) Se a, b, c são números inteiros positivos tais que c = (a + bi)2 – 14i, em que i2 = -1, o valor de c é: a) 48 b) 36 c) 24 d) 14 e) 7
  • 14. Solução c = (a + bi)2 – 14i c = a2 + 2abi + b2i2 – 14i = a2 + 2abi – b2 – 14i c + 0i = (a2 – b2) + (2ab – 14)i 2ab – 14 = 0  ab = 7 Logo, a = 7 e b = 1 ou a = 1 e b = 7 Como c é positivo, temos que: c = 72 – 12 = 49 – 1 = 48 Resposta: letra A.
  • 15. Como somamos ou subtraímos números complexos? Basta somar (ou subtrair)as partes reais e as partes imaginárias. Exemplos:  (3 + 4i) + (-13 + 7i) = -10 + 11 i  (7 – 25i) – (- 5 – 5i) = 12 – 15i
  • 16. Como multiplicamos números complexos? Basta aplicar a propriedade distributiva. Exemplo: (5 + 2i) (2 + 3i) = 10 + 15i + 4i – 6 = 4 + 19i
  • 17. Como dividimos números complexos? Basta multiplicar o numerador e o denominador pelo conjugado do denominador. Exemplo: 2 + 3i ( 2 + 3i )( 5 + 2i ) 10 + 4i + 15i − 6 = = = 5 − 2i ( 5 − 2i )( 5 + 2i ) 25 + 4 4 + 19i 4 19 = = + i 29 29 29
  • 18. Tente fazer sozinho! x −1 2 (Cefet-MG) O valor da expressão quando x −1 3 x = i (unidade imaginária) é : a) (i + 1) b) – (i – 1) c) ( i + 1) 2 d) ( i − 1) e) − ( i − 1) 2 2
  • 19. Solução x −1 i −1 −1 −1 2 2 −2 2 = 3 = = = x −1 i −1 − i −1 −1− i 1+ i 3 2(1 − i ) 2 − 2i 2(1 − i ) = = = 1− i 1 + i (1 − i ) 1 + 1 2 Logo, a resposta é B, pois – (i - 1) = -i +1 = 1-i
  • 20. Como representamos um número complexo no gráfico? Basta representar a parte real no eixo x e a parte imaginária no eixo y. Exemplos: z1 = - 1 + 2i e z2 = 3i y P2 3 P1 2 1 x -1
  • 21. O que é o módulo de um número complexo? É a distância entre a origem e o ponto que corresponde a esse número. Sendo z = a + bi, temos: z = ρ y b ρ P (a,b) x a
  • 22. Como calculamos o módulo de um número complexo? Usando a fórmula z = ρ = a + b . 2 2 Exemplo: z = 1 + 3i z = 1 + 2 ( 3) 2 = 1+ 3 = 4 = 2
  • 23. Tente fazer sozinho! (UFRRJ) Sendo a = 2 + 4i e b = 1 – 3i, o valor a de é: b a) 3 b) 2 c) 5 d) 2 2 e) 1+ 2
  • 24. Solução a a 2 +4 2 2 = = = b b 1 + ( − 3) 2 2 4 + 16 20 20 = = = 2 1+ 9 10 10 Resposta: letra B.
  • 25. O que é argumento de um número complexo? É o ângulo que o módulo do número faz com o eixo x. y b senθ = ρ b a ρ P (a,b) cos θ = ρ θ x a
  • 26. Tente fazer sozinho! (URRN) Se z = (1 + i ) 2 , então o argumento de z é: 1− i a) – 135º b) – 45º c) 45º d) 90º e) 135º
  • 27. Solução z= (1 + i )= 2 1 + 2i − 1 2i = 1− i 1− i 1− i 2i (1 + i ) 2i − 2 2i − 2 = = = = −1 + i (1 − i )(1 + i ) 1 + 1 2 b a senθ = e cos θ = ρ ρ ρ= ( − 1) 2 +1 = 1+1 = 2 2
  • 28. ( 2) = sen 1 2 senθ = 2 ( 2) 2 135º 45º cos θ = −1 ( 2) = − 2 cos 2 ( 2) 2 Logo, o argumento é 135º. Resposta: letra E.
  • 29. Como escrevemos a forma trigonométrica de um número complexo? z = ρ ( cos θ + i senθ ) Exemplo: z = 2 3 + 2i ρ = a +b = 2 2 (2 3 ) 2 + 2 = 12 + 4 = 16 = 4 2 a 2 3 3 cos θ = = =  ρ 4 2   ⇒ θ = 30º b 2 1  senθ = = = ρ 4 2   Logo, z = 4(cos 30º + i sen 30º)
  • 30. Tente fazer sozinho! (Cefet-PR) A forma algébrica do complexo  7π 7π  z =3cos +isen  : é  6 6  3 3 3 a ) z =− − i 2 2 3 3 3 b) z = − i 2 2 3 3 3 c ) z =− − i 2 2 3 3 3 d ) z =− + i 2 2 3 3 3 e) z = − i 2 2
  • 31. Solução  7π 7π  z = 3 cos + isen   6 6  7π z = ρ ( cos θ + isenθ ) ⇒ ρ = 3, θ = = 210º 6 3 cos 210º = − cos 30º = − 2 1 sen210º = − sen30º = − 2
  • 32. a b cos θ = senθ = ρ ρ 3 a 1 b − = − = 2 3 2 3 3 3 3 a=− b=− 2 2 3 3 3 Logo, a forma algébrica é − − i 2 2 Resposta: letra C.
  • 33. Como multiplicamos complexos na forma trigonométrica? z1.z 2 = ρ1.ρ 2 .[ cos(θ1 + θ 2 ) + isen(θ1 + θ 2 ) ] Exemplo:  π π  π π z1 = 2 cos + isen  e z2 = 3 cos + isen   3 3  2 2  π π   π π  z1.z 2 = 2.3cos +  + isen +   3 2  3 2   5π 5π  z1.z 2 = 6 cos + isen   6 6 
  • 34. Como dividimos complexos na forma trigonométrica? z1 ρ1 = [ cos(θ1 − θ 2 ) + isen(θ1 − θ 2 ) ] z2 ρ 2 Exemplo:  π π  π π z1 = 6 cos + isen  e z 2 = 3 cos + isen   2 2  3 3 z1 6   π π   π π  = cos −  + isen −  z2 3   2 3   2 3  z1  π π = 2 cos + isen  z2  6 6
  • 35. Como calculamos uma potência complexos na forma trigonométrica? z n = ρ n .[ cos( nθ ) + isen( nθ ) ] Exemplo:  π π z = 2 cos + isen   3 3   π  π  z = 2 cos 2.  + isen 2.  2 2   3  3   2π 2π  z = 4 cos 2 + isen   3 3 
  • 36. Tente fazer sozinho! 6 + 6i (UPF-RS) Quanto ao número complexo z = , 1− i a alternativa incorreta é: a) Escrito na forma algébrica é z = 6i b) O módulo de z é 6. π c) O argumento de z é rad. 2 d) Escrito na forma trigonométrica tem-se: z = 6( cos π + i senπ ) e) z2 é um número real.
  • 37. Solução a) Escrito na forma algébrica é z = 6i 6 + 6i ( 6 + 6i )(1 + i ) 6 + 6i + 6i − 6 12i z= = = = = 6i 1− i (1 − i )(1 + i ) 1+1 2 b) O módulo de z é 6. z = 0 +6 = 6 =6 2 2 2
  • 38. 6 + 6i z= 1− i π c) O argumento de z é rad. 2 a 0  cos θ = = = 0 ρ 6  π  ⇒ θ = 90º = b 6 2 senθ = = = 1  ρ 6  
  • 39. d) Escrito na forma trigonométrica tem-se: z = 6( cos π + i senπ ) z = ρ ( cos θ + isenθ ) = 6( cos 90º +isen90º ) e) z2 é um número real. z n = ρ n [ cos( nθ ) + isen( nθ ) ] = z 2 = 6 2 [ cos( 2.90º ) + isen( 2.90º ) ] = z 2 = 36[ cos(180º ) + isen(180º ) ] = z = 36[ − 1 + i.0] = −36 2 Resposta: letra D.