Nanofabrication Principle of Field Emission Display in Field Panel Display and Nanosphere Lithography Process  The follo...
Atif SyedNanofabrication2  1. Introduction: One of the fastest growing markets in consumer electronics is the Flat Panel D...
Atif SyedNanofabrication3  2. Principle and Working of FED: FEDs work on the similar principle of the Cathode Ray Tube (CR...
Atif SyedNanofabrication4  The first step of the working of Field Emission is done by emitting electrons parallel to the c...
Atif SyedNanofabrication5  In figure 3, Va is the anode potential and Vf is the driving potential across the gap. The elec...
Atif SyedNanofabrication6   3. Nano sphere lithography process: The process was carried out with the described method in t...
Atif SyedNanofabrication7  will include results and SEM images before the evaporation and annealing stage for the above ch...
Atif SyedNanofabrication8  Concentrations with 1:1 and 10:1 didn’t give satisfactory results and one possible explanation ...
Atif SyedNanofabrication9   Image 3.4: SEM image with concentration 20:1 (20 drops of water into 1 drop of nano suspension...
Atif SyedNanofabrication10  ii. Ammonia: This was used to further experiment with the surface tension of the substrate. Am...
Atif SyedNanofabrication11  In Image 3.5, there is a wave pattern and this could be explained by the tilt and fact that am...
Atif SyedNanofabrication12     Image 3.7: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspe...
Atif SyedNanofabrication13   Image 3.8: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspens...
Atif SyedNanofabrication14   Image 3.9: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspens...
Atif SyedNanofabrication15   Image 3.10: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspen...
Atif SyedNanofabrication16  iii. Methanol: Methanol is known to reduce the surface tension of the substrate and apart from...
Atif SyedNanofabrication17  them is not as expected but a closer view reveals that numerous patches of arrays are found.  ...
Atif SyedNanofabrication18   Image 3.14: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspe...
Atif SyedNanofabrication19  One of the very interesting features which were observed by using methanol was the unexplained...
Atif SyedNanofabrication20  The following images are for concentrations 15:1 and 20:1  Image 3.18: SEM image with concentr...
Atif SyedNanofabrication21   Image 3.20: SEM image with concentration 20:1 (20 drops of methanol into 1 drop of nano suspe...
Atif SyedNanofabrication22  iv. Toluene: The main reason to experiment with toluene was to make use of the property of tol...
Atif SyedNanofabrication23   Image 3.23: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspensio...
Atif SyedNanofabrication24    Image 3.25: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspensi...
Atif SyedNanofabrication25  Image 3.26: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension...
Atif SyedNanofabrication26  Another very interesting feature which was seen clearly with toluene (5:1 concentration) is th...
Atif SyedNanofabrication27   Image 3.31: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspensi...
Atif SyedNanofabrication28   Image 3.33: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspensi...
Atif SyedNanofabrication29  Since Toluene decreases the surface tension and also toluene is hydrophobic, the nano beads ha...
Atif SyedNanofabrication30  The black spots in Image 3.35 and 3.36 signify that there were nano sphere arrays present but ...
Atif SyedNanofabrication31    Image 3.38: SEM image with concentration 20:1 after evaporation (20 drops of water into 1 dr...
Atif SyedNanofabrication32  Methanol: Methanol did have some arrays of nickel deposition but it was not as good as the wat...
Atif SyedNanofabrication33   Image 3.42: SEM image with concentration 15:1 after evaporation (15 drops of methanol into 1 ...
Atif SyedNanofabrication34  Image 3.43: SEM image with concentration 1:1 after evaporation (1 drop of toluene into 1 drop ...
Atif SyedNanofabrication35   Image 3.45: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop ...
Atif SyedNanofabrication36   Image 3.47: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop ...
Atif SyedNanofabrication37   Image 3.49: SEM image with concentration 15:1 after annealing (15 drops of methanol into 1 dr...
Atif SyedNanofabrication38  The following images are for Toluene with concentrations 5:1. The rest were not annealed since...
Atif SyedNanofabrication39    Major problems faced during the experiment: ‐ During evaporation, the substrates which were ...
Atif SyedNanofabrication40     References	 [1] A.A Talin, K.A Dean, J.E Jaskie, "Field Emission Dsiplays," 2011. [2] Richa...
Upcoming SlideShare
Loading in...5
×

Nanofabrication

328

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
328
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Nanofabrication"

  1. 1.   Nanofabrication Principle of Field Emission Display in Field Panel Display and Nanosphere Lithography Process  The following report explains the principles of Field Emission in FPDs and also describes the Nanosphere lithography process. It includes diagrams and detailed explanation of FPDs along with a detailed report on the patterns produced of the Nanospheres. The positive results from the fabrication process (including SEM images) are included in the report.   Atif Syed  
  2. 2. Atif SyedNanofabrication2  1. Introduction: One of the fastest growing markets in consumer electronics is the Flat Panel Displays (FPDs). The market value for FPD in 1999 was estimated to be around 18.5 billion dollars and it was predicted to reach $70 billion by 2010 which would surpass the production of CRTs by a huge margin [1]. There are many different types of FPD such as LCD, TFT, Plasma and Projection Displays which can be found in the market. This report will focus on one such technology known as the Field Emission Display (FED). A basic flow chart for display fabrication process is given below:  Figure 1.1: Display Fabrication flowchart  The information display has always been a very critical human interface with the computer/electronic systems. FPD’s allows us to produce HDTV at an affordable cost. One of the most prominent features of FPD is that each pixel generates its own light energy which allows the display to have high resolution.    Cathode FabricationGrid AttachmentSpacer PlacementVacuum SealAnode FabricationSidewall AttachmentGetter AttachmentTip off and gettering
  3. 3. Atif SyedNanofabrication3  2. Principle and Working of FED: FEDs work on the similar principle of the Cathode Ray Tube (CRTs) and Vacuum Fluorescent Display (VFD) where an electron gun is used with high voltage of up to 10‐30 kV which accelerates the electrons and those electrons excite phosphors. The only difference in FED is that instead of a single electron gun, there is a matrix‐addressed array of millions of cold emitters [1]. These arrays in short are known as the Field Emission Array (FEA). These arrays are arranged in a very close proximity usually around 0.2‐2.0 mm to a phosphor faceplate 1(Anode) so that each phosphor pixel has individual or dedicated field emitters. FEDs consist of hermetically2 sealed glass envelope which is evacuated to form a vacuum space which allows the electrons beam to accelerate [2]. In addition to the faceplate, a back‐plate (Cathode or source of electrons), sidewalls, spacers and getters are also used in the working of FEDs. The anode and cathode are fabricated separately as described in Figure 1. The metallic stripes on the faceplate form a series of cathode lines and by the process of Photolithography, the cathode lines are fabricated in such a way that they are arranged at 90 degree angles which forms rows of switching gates and these arrays form a perfect addressable grid. After the Photolithography process, the grid can be addressed individually and the emitters in between the cathode and anode/gate lines will have enough power to produce a visible spot and all other leakage will not be visible due to high power of illumination of the visible spot.                     Figure 2.1: Field Emission Working Principle Diagram                                                             1 Generally Faceplate is a type of metal or plastic plate which is designed to cover or fit on a device or a component to enhance the device’s functionality or its appearance. In this context it’s referring Anode.  2 Completely sealed or air tight so that the interior/material is not affected by outside influence.         Anode Plate        Cathode PlatePhosphor DotsSpacer ElectronsAnode Addressing Gate Addressing Cathode Addressing Interlayer Dielectric MicroTip Emitters
  4. 4. Atif SyedNanofabrication4  The first step of the working of Field Emission is done by emitting electrons parallel to the cathode in between the space which contains ceramic spacers and they withstand any atmospheric pressure changes and adding ceramic spacers reduces the structure from collapsing. These spaces should also be able to withstand high voltage and should be invincible to users at normal viewing range. The electrode gap which is about few nanometers in length is still is a vacuum gap which required an electric potential to extract electrons from one electrode to other electrode in other words from cathode to anode. The electrons which are emitted from cathode are sent directly to the anode but one has to be careful to block the electrons from striking other surface apart from anode because this will lead to dead pixels. The current flow within the electrode gap follows Nordheim Law which determines the emitted current density in its simplest approximation and it’s given by the following equation [3]: /             Equation 1 Where   is the surface electric filed, B is the emitting material, J is the current density and   is the initial surface electric field when the electric field is 0. With the help of Nordheim Law the addressability of the matrix is determined even with the emission being non linear in nature. Secondly, the electrons travel across the gap and the flow of electrons is from cathode to anode which in turn is accelerated to a single phosphor dot. This creates the three basic colors Red,Green and Blue. This can be further explained through the figure below:  Va        Figure 3.1: Tunneling of Electrons across the nano gap Electric Field Carbon Nano gap Vf Upward Force Equi‐Potential lf le 
  5. 5. Atif SyedNanofabrication5  In figure 3, Va is the anode potential and Vf is the driving potential across the gap. The electrons might scatter a lot of times before actually getting captured by the anode. The efficiency of the captured electrons is given by (le/lf) and for typical FPD it comes to around 3% [2] and this is very low. Although the power efficiency is acceptable because Vf is low this is normally at 20V. If Vf is high the efficiency is reduced according to Nordheim Law which is also a determining factor for the uniformity of electron current actually reaching the anode. Nordheim Law is applied to the scattering events of electrons from pixel to pixel and the closest approximation is taken according to the Equation 1. The emitters as described in Figure 3 are fabricated by using a printing method. This is achieved by directly printing the silver wires at the crossovers. Usually Platinum (Pt) electrodes are formed through thin‐film lithography process. The carbon‐nano gap as mentioned in Figure 3 is done through 2 step fabrication process. There are many ways to achieve this but one of it is done by depositing a film of Palladium Oxide (PdO) through the Printing method. The gap is actually formed by reducing the oxide. The oxide is reduced by giving a series of voltage pulses across the PdO film which is sandwiched between the cathode and anode. While reducing the PdO, the film is eventually transformed into a sub‐micron gap which forms a PdO dot. The gap is then activated by exposing cathode to organic gas and more voltage pulses are provided across the gap. When the gap becomes smaller in size, the pulse becomes larger and eventually the material is evaporated. In anode fabrication process a black matrix and color filters are used. The color filters are used to increase the contrast and the metallic black matrix is used to increase the brightness. The cold emitters are deposited at the intersection of each row. In between the emitters and metallic mesh, a high voltage field is created which in turn pulls the electrons from the tip of the emitters. Since this process is non linear, a small change in the voltage will cause the emitted electrons to saturate. Due to the non linearity, once the pixels are lit up, the visible light stays for a while. To maintain emission uniformity within the pixels usually a current feedback resistor is placed in series with the cathode electrode [2]. Typically FEDs are voltage driven devices where it is difficult to apply more than 2‐3 voltage levels in between cathode and the gates. To avoid this, a gray scale image is achieved by the principle of Pulse Width Modulation which allows to control the power of transmission and in this case controlling the number of electrons produced [2]. For all other passive matrix FPD, the image is created line by line where just one line is activated and the pixels are illuminated by the column drivers. The illuminating period is determined by the intensity which is required for the pixel in that particular image frame. 
  6. 6. Atif SyedNanofabrication6   3. Nano sphere lithography process: The process was carried out with the described method in the lab script. Although the method was followed as said but there were experiments done with different chemicals and concentrations. This section will explain each chemical used which is followed by the SEM images before and after the evaporation step. The first and second steps are common for all the chemicals used. The steps and results are given below: ‐ Step 1: The silicon wafer of <100> has been cut carefully in a square of 1cm dimension. ‐ Step 2: The samples of silicon wafers are then are held over boiling acetone and propan‐2‐ol. The samples are then kept in a beaker and agitated in the ultrasonic cleaner for an hour. These samples are then kept under water so that it can be hydrophilic3. ‐ Step 3: Polystyrene Nanosphere suspension has been used with a suspension of 0.8 micron Nanospheres (as opposed to 0.52 microns mentioned in the lab script. The reason behind this is that the Nanospheres were too small to be viewed clearly through the SEM). The above steps are common for all the chemicals used. The following chemicals and solutions were used in the experiments:  De‐ionized water  Ammonia ( )  Methanol ( )  Toluene ( ) [This is a substitute to Benzene]   The remaining steps of the preparation of the nano beads with the chemicals mentioned above will be explained in details with the results and comments. The next sub‐section                                                             3 The hydrophilic property has been experimented with different chemicals explained later in the report. It has been done to further investigate the possibility of making better nano sphere arrays and also by making the surface tension minimum or low enough to make a perfect array. 
  7. 7. Atif SyedNanofabrication7  will include results and SEM images before the evaporation and annealing stage for the above chemicals. 3.1. Preparation of Nanosphere process: i. Water: As mentioned in the lab script, de‐ionized water was used at different concentrations as mentioned in the table 3.1 below so as to better experiment and argue on the results. Chemical  Concentration(Water: Suspension) Water  1:1 Water  10:1 Water  20:1 Table 3.1: Concentration Level for Water and Suspension After experimenting with the concentrations, the substrates were put into a Petri dish and tilted at a shallow angle and one drop from each of the above concentrations have been added to each individual substrate and kept it there for few hours to dry. After the drying process has been completed, the silicon substrates were examined in the SEM.   Image 3.1: SEM image with concentration 20:1 (20 drops of water into 1 drop of nano suspension) 
  8. 8. Atif SyedNanofabrication8  Concentrations with 1:1 and 10:1 didn’t give satisfactory results and one possible explanation for this is that the surface tension was high. The images from the SEM for the concentration level of 20:1 has yeilded interesting results. Some patches of arrays were found but another interesting feature is that there were stacks of nano beads found. This explains the dark spots in the Image 3.1. It is because the charge is too high based on the working distance of the microscope and due to this the beads above/stacked up are darkened by the electrons emitting (back scattering of electrons) and the electrons are not been detected.   Image 3.2: SEM image with concentration 20:1 (20 drops of water into 1 drop of nano suspension) ‐ Magnified image on the Nanosphere arrays The stacking can be clearly seen in the Image 3.4 instead of being dark in the previous image. 
  9. 9. Atif SyedNanofabrication9   Image 3.4: SEM image with concentration 20:1 (20 drops of water into 1 drop of nano suspension) ‐ Magnified image on the Nanosphere arrays        
  10. 10. Atif SyedNanofabrication10  ii. Ammonia: This was used to further experiment with the surface tension of the substrate. Ammonia is known to have the highest specific heat capacity4 which should give a large degree of freedom of molecules of the material. Also Ammonia’s molar mass is lighter than water (17.031 g/mol) and this was used to make the nano beads spread out evenly in an array. The following concentrations were used with different proportions: Chemical  Concentration(Ammonia: Suspension) Ammonia  15:1 Ammonia  20:1 Ammonia  40:1 Table 3.2: Concentrations of Ammonia with different proportions  Image 3.5: SEM image with concentration 15:1 (15 drops of ammonia into 1 drop of nano suspension)                                                             4 It is the heat capacity per until mass of a material 
  11. 11. Atif SyedNanofabrication11  In Image 3.5, there is a wave pattern and this could be explained by the tilt and fact that ammonia did reduce the surface tension so that the Nanosphere arrays are achieved. After zooming into the wave lines, the arrays of nano beads are found but they are still scattered.  Image 3.6: SEM image with concentration 15:1 (15 drops of ammonia into 1 drop of nano suspension) ‐ Zoomed in image In Image 3.6 the nano beads arrays are formed but an interesting feature about this one is that the nano beads at the edges are brighter than the one more towards the center. One possible explanation is that the nano beads at the edges are stacked which is making them brighter as seen in the previous images where water was used. Ammonia also is highly conducting and contains solvated electrons5.                                                              5 It is the free electron in a solution and it is also the smallest possible anion. 
  12. 12. Atif SyedNanofabrication12     Image 3.7: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspension) 
  13. 13. Atif SyedNanofabrication13   Image 3.8: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspension) It can be seen in Image 3.7 the concentration has affected the thickness of the wave pattern (the wave pattern is made up of nano beads). Image 3.8 shows a zoomed in image of the nano beads which shows a very uneven distribution of the nano beads. These won’t be of big use and the main reason for the uneven distribution is because of the higher concentration of ammonia which reduced the surface tension of the surface more than required. 
  14. 14. Atif SyedNanofabrication14   Image 3.9: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspension) ‐ A week later Image 3.9 was examined a week after the first inspection in the SEM as seen in Image 3.7 and 3.8. The nano beads have disappeared. It has been seen that the substrate has been damaged possibly the lattice has been damaged. Over time ammonia has dissolved the polystyrene Nanospheres. Ammonia solutions are strong reducing agents and due to this the above phenomenon is observed. 
  15. 15. Atif SyedNanofabrication15   Image 3.10: SEM image with concentration 40:1 (40 drops of ammonia into 1 drop of nano suspension) ‐ A week later         
  16. 16. Atif SyedNanofabrication16  iii. Methanol: Methanol is known to reduce the surface tension of the substrate and apart from that methanol has higher molar mass (32.04 g/mol) which is higher than the previous chemicals used. The following concentrations of methanol and polystyrene has been used: Chemical  Concentration (Methanol: Polystyrene) Methanol  15:1 Methanol  20:1 Methanol  40:1 Table 3.3: Concentrations of Ammonia with different proportions The SEM images if the above concentrations are shown below:  Image 3.11: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension) In the above Image 3.11, the nano beads are arranged in a much better way as compared to the previous images using other chemicals. Although the spacing between 
  17. 17. Atif SyedNanofabrication17  them is not as expected but a closer view reveals that numerous patches of arrays are found.  Image 3.12: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension)  Image 3.13: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension)  
  18. 18. Atif SyedNanofabrication18   Image 3.14: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension)  Image 3.15: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension) 
  19. 19. Atif SyedNanofabrication19  One of the very interesting features which were observed by using methanol was the unexplained spikes which were only observed in 40:1 concentration. It was present only where the beads are present; it can be seen in the following images as well.  Image 3.16: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension)  Image 3.17: SEM image with concentration 40:1 (40 drops of methanol into 1 drop of nano suspension) One of the possible explanations for this one would be that higher concentration of methanol is possibly damaging the lattice of the silicon substrate since methanol is a polar liquid. 
  20. 20. Atif SyedNanofabrication20  The following images are for concentrations 15:1 and 20:1  Image 3.18: SEM image with concentration 15:1 (15 drops of methanol into 1 drop of nano suspension)  Image 3.19: SEM image with concentration 15:1 (15 drops of methanol into 1 drop of nano suspension) 
  21. 21. Atif SyedNanofabrication21   Image 3.20: SEM image with concentration 20:1 (20 drops of methanol into 1 drop of nano suspension)  Image 3.21: SEM image with concentration 20:1 (20 drops of methanol into 1 drop of nano suspension)  
  22. 22. Atif SyedNanofabrication22  iv. Toluene: The main reason to experiment with toluene was to make use of the property of toluene which is that its water insoluble. The following concentrations have been used and examined in the SEM. Chemical  Concentration (Toluene: Polystyrene) Toluene  1:1 Toluene  5:1 Toluene  15:1   Image 3.22: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension) The zoomed out image of toluene shows that the nano beads are having more arrays as compared to the previous images. Toluene’s property of being hydrophobic allows the nano beads to spread out. Since the substrate has lower surface tension, the nano beads are found closer to the edge of the substrate which can be seen in further images. 
  23. 23. Atif SyedNanofabrication23   Image 3.23: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension)  Image 3.24: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension)  
  24. 24. Atif SyedNanofabrication24    Image 3.25: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension)  
  25. 25. Atif SyedNanofabrication25  Image 3.26: SEM image with concentration 1:1 (1 drop of toluene into 1 drop of nano suspension) With the concentration of 5:1, the nano beads are having much better arrays as it can be seen from the SEM images below.  Image 3.27: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension) ‐ Zoomed out image  Image 3.28: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension) ‐ Zoomed out image 
  26. 26. Atif SyedNanofabrication26  Another very interesting feature which was seen clearly with toluene (5:1 concentration) is that some nano spheres are bigger than the others in size. Possible explanation could be that there might be attached to one another hence creating a bigger nano sphere.  Image 3.29: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension)   Image 3.30: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension)   
  27. 27. Atif SyedNanofabrication27   Image 3.31: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension)   Image 3.32: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension)  
  28. 28. Atif SyedNanofabrication28   Image 3.33: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension)   Image 3.34: SEM image with concentration 5:1 (5 drops of toluene into 1 drop of nano suspension) 
  29. 29. Atif SyedNanofabrication29  Since Toluene decreases the surface tension and also toluene is hydrophobic, the nano beads have floated on the surface and tilting the substrate at shallow angle made the nano beads flow out of the substrate. This is shown in the following images:  Image 3.35: SEM image with concentration 15:1 (15 drops of toluene into 1 drop of nano suspension) ‐ Zoomed out image  Image 3.36: SEM image with concentration 15:1 (15 drops of toluene into 1 drop of nano suspension) ‐ Zoomed out image 
  30. 30. Atif SyedNanofabrication30  The black spots in Image 3.35 and 3.36 signify that there were nano sphere arrays present but it eventually floated off the substrate after the drying stage. 3.2. Evaporation and Annealing Process: 3.2.1. Evaporation: The main aim of this process is to evaporate nickel in a vacuum. The vacuum allows the vapor particles to travel to the substrate directly. After this stage, the vapors are then condensed into a solid state. The following substrates were evaporated with nickel:  Chemical  Concentration Water  20:1(Water: Suspension) Methanol  15:1(Methanol: Suspension) Methanol  20:1(Methanol: Suspension) Methanol  40:1(Methanol: Suspension) Toluene  1:1(Toluene: Suspension) Toluene  5:1(Toluene: Suspension) The nickel deposited on the substrates was controlled to a diameter of 32‐38 nm. After inspection from the SEM, the nickel was seen on the substrate making a thin layer film deposition. Water:  Image 3.37: SEM image with concentration 20:1 after evaporation (20 drops of water into 1 drop of nano suspension) 
  31. 31. Atif SyedNanofabrication31    Image 3.38: SEM image with concentration 20:1 after evaporation (20 drops of water into 1 drop of nano suspension) It has been noted that if the substrates were passed through ultrasonic mixer, the Nanospheres are still found on the substrate even through it has been cleaned with the dichloromethane as seen in the following Image 3.39.  Image 3.39: SEM image with concentration 20:1 after evaporation (20 drops of water into 1 drop of nano suspension)  
  32. 32. Atif SyedNanofabrication32  Methanol: Methanol did have some arrays of nickel deposition but it was not as good as the water substrate.  Image 3.40: SEM image with concentration 15:1 after evaporation (15 drops of methanol into 1 drop of nano suspension)  Image 3.41: SEM image with concentration 15:1 after evaporation (15 drops of methanol into 1 drop of nano suspension) 
  33. 33. Atif SyedNanofabrication33   Image 3.42: SEM image with concentration 15:1 after evaporation (15 drops of methanol into 1 drop of nano suspension)  Toluene: The substrates which had toluene on them didn’t give good results as expected and it can be seen from the following SEM images which was due to the fact the during the evaporation process the substrates fell off from the glass slab.  
  34. 34. Atif SyedNanofabrication34  Image 3.43: SEM image with concentration 1:1 after evaporation (1 drop of toluene into 1 drop of nano suspension)   Image 3.44: SEM image with concentration 1:1 after evaporation (1 drop of toluene into 1 drop of nano suspension) The main reason behind the evaporation not yielding good results is that toluene is hydrophobic and this has created glue like jelly like substance in the nano beads arrays and due to this there is no gap where the nickel can be deposited hence the array pattern is not seen in the above images. 3.2.2. Annealing: Annealing is the process of heat treatment where the material is altered such that its strength, properties, hardness etc. Typically annealing induces ductility, softens, and relieves the internal stress of the material. The temperature the annealing has been done matters based on the substrate and its dimensions. In this case we have silicon with approximately 1 cm cube. The temperature ideal for silicon with 1cm dimensions would be in the range of 450C ‐ 900 C but the heating plate in the clean room was not adequate for high temperature annealing hence the range of annealing was taken from 250 C‐ 450 C. Although the samples present in this report doesn’t actually have the same dimensions. After annealing the substrates had a smoother surface and the arrays were seen at a better angle. But the nano beads appeared to stay on the substrate. The dichloromethane and the ultrasonic stir didn’t seem to work properly. These are seen in the following images. 
  35. 35. Atif SyedNanofabrication35   Image 3.45: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop of nano suspension)   Image 3.46: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop of nano suspension) 
  36. 36. Atif SyedNanofabrication36   Image 3.47: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop of nano suspension)  Image 3.48: SEM image with concentration 20:1 after annealing (20 drops of water into 1 drop of nano suspension) 
  37. 37. Atif SyedNanofabrication37   Image 3.49: SEM image with concentration 15:1 after annealing (15 drops of methanol into 1 drop of nano suspension)  Image 3.50: SEM image with concentration 15:1 after annealing (15 drops of methanol into 1 drop of nano suspension)  Image 3.51: SEM image with concentration 15:1 after annealing (15 drops of methanol into 1 drop of nano suspension) 
  38. 38. Atif SyedNanofabrication38  The following images are for Toluene with concentrations 5:1. The rest were not annealed since their results after the evaporation showed that it won’t be useful to anneal them since they didn’t had proper arrays in them. In Image 3.52, the Nanospheres have a very good array but unfortunately they stayed on the substrate otherwise this would have created a good field emitting arrays which potentially be used with Carbon Nanotube and which could potentially form Microtips.  Image 3.52: SEM image with concentration 5:1 after annealing (5 drops of toluene into 1 drop of nano suspension)  Image 3.53: SEM image with concentration 5:1 after annealing (5 drops of toluene into 1 drop of nano suspension)  
  39. 39. Atif SyedNanofabrication39    Major problems faced during the experiment: ‐ During evaporation, the substrates which were stuck on the glass slab fell off and some were hanging in the chamber and some samples didn’t had the evaporation done properly, the vertical evaporation can be seen in the following image of toluene sample. Due to this not all the evaporated samples were annealed.  Image 3.54: SEM image with concentration 1:1 after annealing (1 drop of toluene into 1 drop of nano suspension) ‐ The clean room atmosphere had dirt and dust which can be clearly seen in the SEM images of the samples. ‐ The heating plate during the annealing process didn’t allowed the samples to be annealed at a temperature more than 550 C despite the fact that the results are proven to be better at temperatures more than 750 C [4] [5] and the Low‐Pressure Chemical‐Vapor‐deposited (LPCVD) oxide thermal conductivity increases by 23% at 1150 C [6]. ‐ If the experiment was carried out with no interference with the samples (including people moving the samples while the samples are drying), much better results could have been achieved. 
  40. 40. Atif SyedNanofabrication40     References  [1] A.A Talin, K.A Dean, J.E Jaskie, "Field Emission Dsiplays," 2011. [2] Richard Fink, Zvi Yanib, "A closer look at SED, FED technologies". [3] YY Lau, Youfan Liu, RK Parker, "Electron Emision: From the Fowler‐Bordheim relation to the Langmuir Law". [4] D. Lysáček, L. Válek, "Structural changes of polycrystalline silicon layers during high temperature annealing". [5] Hatalis, Miltiadis K.; Greve, David W., "Large grain polycrystalline silicon by low‐temperature annealing of low‐pressure chemical vapor deposited amorphous silicon films," Journal of Applied Physics, vol. 63, pp. 2260‐2266. [6] K. E. Goodson, M. I. Flik, L. T. Su, Dimitri A. Antoniadis , "Annealing‐Temperature Dependence of the Thermal Conductivity of LPCVD Silicon‐Dioxide Layers," IEEE ELECTRON DEVICE L E T E R S, vol. 14, no. 10, 1993.           

×