6 Weeks Industrial Training In Telecom In Chandigarh

626 views
515 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
626
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
73
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

6 Weeks Industrial Training In Telecom In Chandigarh

  1. 1. www.arcadianlearning.com Concept of TDMA Frames And Channels In GSM
  2. 2. Concept of TDMA Frames and Channels  GSM combines FDM and TDM: bandwidth is subdivided into channels of 200khz, shared by up to eight stations, assigning slots for transmission on demand. f t c www.arcadianlearning.com
  3. 3. GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz www.arcadianlearning.com
  4. 4. GSM delays uplink TDMA frames T1 T2 T3 T5 T6 T7T4 T8 R T R T R1 R2 R3 R5 R6 R7R4 R8 Uplink TDMA Frame F1 + 45MHz Downlink TDMA F1MHz The start of the uplink TDMA is delayed of three time slots TDMA frame (4.615 ms) Fixed transmit Delay of three time-slots www.arcadianlearning.com
  5. 5. 1 2 3 4 5 6 7 8 higher GSM frame structures 935-960 MHz 124 channels (200 kHz) downlink 890-915 MHz 124 channels (200 kHz) uplink time GSM TDMA frame GSM time-slot (normal burst) 4.615 ms 546.5 µs 577 µs guard space guard spacetail user data TrainingS S user data tail 3 bits 57 bits 26 bits 57 bits1 1 3 GSM - TDMA/FDMA www.arcadianlearning.com
  6. 6. LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm 22.8 Kb/S HALF RATE Lm 11.4 Kb/S BROADCAST COMMON CONTROL DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH -- FREQUENCY CORRECTION CHANNEL SCH -- SYNCHRONISATION CHANNEL BCCH -- BROADCAST CONTROL CHANNEL PCH -- PAGING CHANNEL RACH -- RANDOM ACCESS CHANNEL AGCH -- ACCESS GRANTED CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS www.arcadianlearning.com
  7. 7. Broadcast Channel - BCH  Broadcast control channel (BCCH) is a base to mobile channel which provides general information about the network, the cell in which the mobile is currently located and the adjacent cells  Frequency correction channel (FCCH) is a base to mobile channel which provides information for carrier synchronization  Synchronization channel (SCH) is a base to mobile channel which carries information for frame synchronization and identification of the base station transceiver www.arcadianlearning.com
  8. 8. Common Control Channel - CCH  Paging channel (PCH) is a base to mobile channel used to alert a mobile to a call originating from the network  Random access channel (RACH) is a mobile to base channel used to request for dedicated resources  Access grant channel (AGCH) is a base to mobile which is used to assign dedicated resources (SDCCH or TCH) www.arcadianlearning.com
  9. 9. Dedicated Control Channel - DCCH  Stand-alone dedicated control channel (SDCCH) is a bi-directional channel allocated to a specific mobile for exchange of location update information and call set up information www.arcadianlearning.com
  10. 10. Dedicated Control Channel - DCCH  Slow associated control channel (SACCH) is a bi- directional channel used for exchanging control information between base and a mobile during the progress of a call set up procedure. The SACCH is associated with a particular traffic channel or stand alone dedicated control channel  Fast associated control channel (FACCH) is a bi- directional channel which is used for exchange of time critical information between mobile and base station during the progress of a call. The FACCH transmits control information by stealing capacity from the associated TCH www.arcadianlearning.com
  11. 11. TAIL BIT ENCRYPTION BIT GUARD PERIOD TRAINING BITS MIXED BITS SYNCHRONISATION BITSFIXED BITS FLAG BITS 3 57 1 26 1 57 3 8.25NORMAL BURST - NB 3 142 3 8.25 FREQUENCY CORRECTION BURST - FB 3 3 8.2539 64 39SYNCHRONISATION BURST - SB 36 41 36 68.25 ACCESS BURST - AB DEFINITION OF TIME SLOT - 156.25 BITS 15/26ms = 0.577ms
  12. 12. 0 1 2 3 4 5 6 2043 2044 2045 2046 2047 0 1 2 3 4 48 49 50 0 1 2 24 25 0 1 2 3 24 25 0 1 2 3 4 48 49 50 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 HYPER FRAME = 2048 SUPERFRAMES = 2 715 648 TDMA FRAMES ( 3 H 28 MIN 53 S 760 MS ) 1 SUPER FRAME = 1326 TDMA FRAMES ( 6.12 S ) LEFT (OR) RIGHT 1 MULTI FRAME = 51 TDMA FRAMES (235 .4 ms ) 1 SUPER FRAME = 26 MULTI FRAMES 1 SUPER FRAME = 51 MULTI FRAMES 1 MULTIFRAME = 26 TDMA FRAMES ( 120 ms ) TDMA FRAME NO. 0 1 0 1 HIERARCHY OF FRAMES 1 2 3 4 155 156 1 TIME SLOT = 156.25 BITS ( 0.577 ms) (4.615ms) (4.615 ms) 1 bit =36.9 micro sec TRAFFIC CHANNELS SIGNALLING CHANNELS
  13. 13. GSM Frame 0 1 2 3 4 5 6 7 3 57 1 26 1 57 3 8.25 0 1 2 12 24 25 Full rate channel is idle in 25SACCH is transmitted in frame 120 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms www.arcadianlearning.com
  14. 14.  114 bits are available for data transmission.  The training sequence of 26 bits in the middle of the burst is used by the receiver to synchronize and compensate for time dispersion produced by multipath propagation.  1 stealing bit for each information block (used for FACCH) www.arcadianlearning.com
  15. 15. LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm 22.8 Kb/S HALF RATE Lm 11.4 Kb/S BROADCAST COMMON CONTROL DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH -- FREQUENCY CORRECTION CHANNEL SCH -- SYNCHRONISATION CHANNEL BCCH -- BROADCAST CONTROL CHANNEL PCH -- PAGING CHANNEL RACH -- RANDOM ACCESS CHANNEL AGCH -- ACCESS GRANTED CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS
  16. 16. Mobile looks for BCCH after switching on RACH send channel request AGCH receive SDCCH SDCCH authenticate SDCCH switch to cipher mode SDCCH request for location updating SDCCH authenticate response SDCCH cipher mode acknowledge SDCCH allocate TMSI SDCCH acknowledge new TMSI SDCCH switch idle update mode Location update from the mobile
  17. 17. Mobile looks for BCCH after switching on RACH send channel request AGCH receive SDCCH SDCCH do the authentication and TMSI allocation SDCCH require traffic channel assignment SDCCH send call establishment request SDCCH send the setup message and desired number FACCH switch to traffic channel and send ack (steal bits) FACCH receive alert signal ringing sound FACCH acknowledge connect message and use TCH TCH conversation continues FACCH receive connect message Call establishment from a mobile
  18. 18. Mobile looks for BCCH after switching on Receive signaling channel SDCCH on AGCH Receive alert signal and generate ringing on FACCH Receive authentication request on SDCCH Generate Channel Request on RACH Answer paging message on SDCCH Authenticate on SDCCH Receive setup message on SDCCH FACCH acknowledge connect message and switch to TCH Receive connect message on FACCH Receive traffic channel assignment on SDCCH Mobile receives paging message on PCH FACCH switch to traffic channel and send ack (steal bits) Call establishment to a mobile
  19. 19. GSM speech coding AIR INTERFACE UPLINK 890 - 915 MHz DOWNLINK 935 - 960 MHz MOBILE BASE TRANSCEIVER STATION www.arcadianlearning.com
  20. 20. Transmit Path BS Side 8 bit A-Law to 13 bit Uniform RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps MS Side LPF A/D RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps, Sampling Rate - 8K Encoding - 13 bit Encoding (104 Kbps) RPE/LTP - Regular Pulse Excitation/Long Term Prediction RPE/LTP converts the 104 Kbps stream to 13 Kbps www.arcadianlearning.com
  21. 21. GSM Speech Coding  GSM is a digital system, so speech which is inherently analog, has to be digitized.  The method employed by current telephone systems for multiplexing voice lines over high speed trunks and is pulse coded modulation (PCM). The output stream from PCM is 64 kbps, too high a rate to be feasible over a radio link. www.arcadianlearning.com
  22. 22. GSM Frame 0 1 2 3 4 5 6 7 3 57 1 26 1 57 3 8.25 0 1 2 12 24 25 Full rate channel is idle in 25SACCH is transmitted in frame 120 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms www.arcadianlearning.com
  23. 23. GSM Speech Coding  Speech is divided into 20 millisecond samples, each of which is encoded as 260 bits, giving a total bit rate of 13 kbps.  Regular pulse excited -- linear predictive coder (RPE--LPC) with a long term predictor loop is the speech coding algorithm. www.arcadianlearning.com
  24. 24.  The 260 bits are divided into three classes:  Class Ia 50 bits - most sensitive to bit errors.  Class Ib 132 bits - moderately sensitive to bit errors.  Class II 78 bits - least sensitive to bit errors.  Class Ia bits have a 3 bit cyclic redundancy code added for error detection = 50+3 bits.  132 class Ib bits with 4 bit tail sequence = 132 + 4 = 136.  Class Ia + class Ib = 53+136=189, input into a 1/2 rate convolution encoder of constraint length 4. Each input bit is encoded as two output bits, based on a combination of the previous 4 input bits. The convolution encoder thus outputs 378 bits, to which are added the 78 remaining class II bits.  Thus every 20 ms speech sample is encoded as 456 bits, giving a bit rate of 22.8 kbps. www.arcadianlearning.com
  25. 25.  To further protect against the burst errors common to the radio interface, each sample is interleaved. The 456 bits output by the convolution encoder are divided into 8 blocks of 57 bits, and these blocks are transmitted in eight consecutive time-slot bursts. Since each time-slot burst can carry two 57 bit blocks, each burst carries traffic from two different speech samples. 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 3 57 bits 261 1 57 bits 3 www.arcadianlearning.com
  26. 26. GSM Protocol Suite www.arcadianlearning.com
  27. 27. BTS Radio interface HLR MSC VLR BSC RR MM + CM SS www.arcadianlearning.com
  28. 28. Link Layer  LAPDm is used between MS and BTS  LAPD is used between BTS-BSC  MTP2 is used between BSC- MSC/VLR/HLR www.arcadianlearning.com
  29. 29. Network Layer  To distinguish between CC, SS, MM and RR protocol discriminator (PD) is used as network address.  CC call control management MS-MSC.  SS supplementary services management MS- MSC/HLR.  MM mobility management(location management, security management) MS-MSC/VLR.  RR radio resource management MS-BSC.  Messages pertaining to different transaction are distinguished by a transaction identifier (TI). www.arcadianlearning.com
  30. 30. Application Layer protocols  BSSMAP between BSC and MSC  DTAP messages between MS and MSC.  All messages on the A interface bear a discrimination flag, indicating whether the message is a BSSMAP or a DTAP.  DTAP messages carry DLCI(information on type of link on the radio interface) to distinguish what is related to CC or SMS.  MAP protocol is the one between neighbor MSCs. MAP is also used between MSC and HLR. www.arcadianlearning.com
  31. 31. Q.921 Radio Interface Q.931 Q.921 MAP TCAP CCS7 MTP CCS7 SCCP Mobile Application Part Q931 BSSAP SCCP CCS7 MTP A Interface A-Bis Interface Um Base Station System GSM Functional Architecture and Principal Interfaces www.arcadianlearning.com
  32. 32. GSM protocol layers for signaling CM MM RR MM LAPDm radio LAPDm radio LAPD PCM RR’ BTSM CM LAPD PCM RR’ BTSM 16/64 kbit/s Um Abis A SS7 PCM SS7 PCM 64 kbit/s / 2.048 Mbit/s MS BTS BSC MSC BSSAP BSSAP www.arcadianlearning.com
  33. 33. Protocols involved in the radio interface  Level 1-Physical  TDMA frame  Logical channels multiplexing  Level 2-LAPDm(modified from LAPD)  No flag  No error retransmission mechanism due to real time constraints  Level 3-Radio Interface Layer (RIL3) involves three sub layers  RR: paging, power control, ciphering execution, handover  MM: security, location IMSI attach/detach  CM: Call Control(CC), Supplementary Services(SS), Short Message Services(SMS), www.arcadianlearning.com
  34. 34. www.arcadianlearning.com
  35. 35. LAPDm on radio interface  In LAPDm the use of flags is avoided.  LAPDm maximum length is 21 octets of information. It makes use of “more” bit to distinguish last frame of a message.  No frame check sequence for LAPDm, it uses the error detecting performance of the transmission coding scheme offered by the physical layer www.arcadianlearning.com
  36. 36. ADDRESS CONTROL INFORMATION 0-21 OCTETS SAPI N(S) N(R) LAPDm Message structure www.arcadianlearning.com
  37. 37. www.arcadianlearning.com
  38. 38. LAPDm on radio interface  The acknowledgement for the next expected frame in the indicator N(R ).  On radio interface two independent flows(one for signaling, and one for SMS) can exist simultaneously.  These two flows are distinguished by a link identifier called the SAPI(service access point identifier).  LAPDm SAPI=0 for signaling and SAPI=3 for SMS.  SAP1=0 for radio signaling, SAPI=62 for OAM and SAPI=63 for layer 2 management on the Abis interface.  There is no need of a TEI, because there is no need to distinguish the different mobile stations, which is done by distinguishing the different radio channels. www.arcadianlearning.com
  39. 39. Protocols involved in the A-bis interface  Level 1-PCM transmission (E1 or T1)  Speech encoded at 16kbit/s and sub multiplexed in 64kbit/s time slots.  Data which rate is adapted and synchronized.  Level 2-LAPD protocol, standard HDLC  Radio Signaling Link (RSL)  Operation and Maintenance Link (OML).  Level 3-Application Protocol  Radio Subsystem Management (RSM)  Operation and Maintenance procedure (OAM) www.arcadianlearning.com
  40. 40. Presentation of A-bis Interface  Messages exchanges between the BTS and BSC.  Traffic exchanges  Signaling exchanges  Physical access between BTS and BSC is PCM digital links of E1(32) or T1(24) TS at 64kbit/s.  Speech:  Conveyed in timeslots at 4X16 kbit/s  Data:  Conveyed in timeslots of 4X16 kbit/s. The initial user rate, which may be 300, 1200, … is adjusted to 16 kbit/s www.arcadianlearning.com
  41. 41. FLAG ADRESS CONTROL INFORMATION 0 – 260 OCT FCS FLAG SAPI TEI N(S) N(R) LAPD message structure www.arcadianlearning.com
  42. 42. LAPD  The length is limited to 260 octets of information.  LAPD has the address of the destination terminal, to identify the TRX, since this is a point to multipoint interface.  Each TRX in a BTS corresponds to one or several signaling links. These links are distinguished by TEI (Terminal Equipment Identities).  SAPI=0, SAPI=3, SAPI=62 for OAM. www.arcadianlearning.com
  43. 43. Presentation of the A-ter interface www.arcadianlearning.com
  44. 44. BSC TRAU MSC OMC OAM Transcoding LAPD TS1 Speech TS CCS7 TS X.25 TS2 Speech TS CCS7 TS X.25 TS2 PCM LINK PCM LINK www.arcadianlearning.com
  45. 45. Presentation on the A-ter interface  Signaling messages are carried on specific timeslots (TS)  LAPD signaling TS between the BSC and the TCU  SS7 TS between the BSC and the MSC, dedicated for BSSAP messages transportation.  X25 TS2 is reserved for OAM.  Speech and data channels (16kbit/s)  Ater interface links carry up to:  120 communications(E1), 4*30  92 communications(T1).  The 64 kbit/s speech rate adjustment and the 64 kbit/s data rate adaptation are performed at the TCU. www.arcadianlearning.com
  46. 46. Presentation of the A interfacewww.arcadianlearning.com
  47. 47. Signaling Protocol Model
  48. 48. Presentation on the A-Interface BSSMAP - deals with procedures that take place logically between the BSS and MSC, examples: Trunk Maintenance, Ciphering, Handover, Voice/Data Trunk Assignment DTAP - deals with procedures that take place logically between the MS and MSC. The BSS does not interpret the DTAP information, it simply repackages it and sends it to the MS over the Um Interface. examples: Location Update, MS originated and terminated Calls, Short Message Service, User Supplementary Service registration, activation, deactivation and erasure www.arcadianlearning.com
  49. 49. Inter MSC presentation www.arcadianlearning.com
  50. 50. O A M L A P D BTS MTP2 SCCP MTP3 L A P D O A M R R D T A P B S S M A P BSSAP BSC MTP1 MTP3 MTP2 SCCP MTP2 MTP3 SCCP BSSAP DTAP/ BSSMAP T C A P MM CM M A P NSS R R MM CM MS Um Interface A bis Interface A Interface www.arcadianlearning.com
  51. 51. SCCP Ref=R2 TRX:TEI=T1 Channel ID = N1 SCCP Ref=R1 DTAP DLCI: SAPI=3 DLCI: SAPI=0 Channel=C1 Link: SAPI=3 Link: SAPI=0 PD=CC TI=a TI=b PD=MM PD=RR TI=A MS BSC MSC Channel=C2 Channel ID = N1 Radio Interface Abis Interface A Interface PD: protocol discriminator TI: Transaction Identifier for RIL3-CC protocol DLCI: Data Link connection Identifier SAPI: Service Access Point Identifier on the radio Interface TEI: Terminal Equipment Identifier on the Abis I/F
  52. 52. Bearer Services  Telecommunication services to transfer data between access points  Specification of services up to the terminal interface (OSI layers 1-3)  Different data rates for voice and data (original standard)  Data service ○ Synchronous: 2.4, 4.8 or 9.6 kbit/s ○ Asynchronous: 300 - 1200 bit/s www.arcadianlearning.com
  53. 53. Tele Services  Telecommunication services that enable voice communication via mobile phones.  All these basic services have to obey cellular functions, security measurements etc.  Offered services.  Mobile telephony primary goal of GSM was to enable mobile telephony offering the traditional bandwidth of 3.1 kHz.  Emergency number common number throughout Europe (112); Mandatory for all service providers; Free of charge; Connection with the highest priority (preemption of other connections possible).  Multinumbering several ISDN phone numbers per user possible. www.arcadianlearning.com
  54. 54. Performance characteristics of GSM  Communication  mobile, wireless communication; support for voice and data services  Total mobility  international access, chip-card enables use of access points of different providers  Worldwide connectivity  one number, the network handles localization  High capacity  better frequency efficiency, smaller cells, more customers per cell  High transmission quality  high audio quality and reliability for wireless, uninterrupted phone calls at higher speeds (e.g., from cars, trains)  Security functions  access control, authentication via chip-card and PIN www.arcadianlearning.com
  55. 55. Disadvantages of GSM  No full ISDN bandwidth of 64 kbit/s to the user  Reduced concentration while driving  Electromagnetic radiation  Abuse of private data possible  High complexity of the system  Several incompatibilities within the GSM standards www.arcadianlearning.com
  56. 56. https://www.facebook.com/ArcadianLearnings https://twitter.com/Arcadianlearn http://www.linkedin.com/in/arcadianlearning For more updates, join us @: www.arcadianlearning.com
  57. 57. http://arcadianlearning.com/ For Trainings and Workshops, Contact u

×