Progresiones geométricas

  • 42,753 views
Uploaded on

Contiene un resumen del tema Progresiones geométricas con ejemplos prácticos para su fácil comprensión

Contiene un resumen del tema Progresiones geométricas con ejemplos prácticos para su fácil comprensión

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
42,753
On Slideshare
0
From Embeds
0
Number of Embeds
16

Actions

Shares
Downloads
356
Comments
2
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. PROGRESIONES GEOMETRICAS Mg. ARACELLI SALDAÑA ARBAIZA
  • 2. Definición
    • Se denomina progresión geométrica a aquella sucesión en la que cada término se obtiene multiplicando el anterior por una constante llamada razón.
  • 3.
    • EJEMPLO: En l a progresión geométrica:
    • se observa que:
    • El segundo término que es 12, se obtuvo de multiplicar por 4 el primer término.
    • El tercer término que es 48, se obtiene de multiplicar el segundo término por 4 y así sucesívamente.
  • 4. TÉRMINO GENERAL Según la definición anterior y el ejemplo de progresión geométrica que se ha presentado, se verifica: a 2 = a 1 · r a 3 = a 2 · r = a 1 · r · r = a 1 · r 2 a 4 = a 3 · r = a 1 · r 2 · r = a 1 · r 3 Donde a 1 ; a 2 ; a 3 ;… son los términos de la progresión geométrica. Luego reemplazando se tiene: a 1 ; a 1 · r ; a 1 ·r 2 ; a 1 · r 3 ; … ; a 1 · r n - 1 Es decir que el término nésimo o término general se obtiene de la siguinet forma. a n = a 1 · r n - 1
  • 5. Ejemplo: ¿Cuál es la razón de la progresión geométrica 5;15;45;135;405;…? Solución: La razón se obtiene dividiendo cualquiera de los términos por el anterior, por ejemplo: 15:3=5. Si dividimos otro par de números tenemos:135:45=5. Observamos que el cociente de cualquier término entre el anterior es siempre 5. Por lo que la razón es r= 5
  • 6. Ejemplo 2. Cuál es el quinto término de una progresión geométrica en la que el primer término es 2 y la razón es 3? Solución. Una forma sería multiplicado el primer término por la razón, y seguir el mismo procedimiento con el siguiente término hasta obtener el quinto término: 2x3 = 6, 6x3 = 18 , 18x3 = 54, 54x3= 162 Luego el quinto término es 162.
  • 7.
    • Otra forma de obtener el quinto término sería utilizando la fórmula del n-ésimo término: a n = a 1 · r n – 1
    • donde:
    • a n :es el quinto término,
    • a 1 :es el primer término
    • r :es la razón
    • n :es la cantidad de términos que en esta caso son 5 términos. Luego se reemplaza en la fórmula:
    • a 5 = 2 (3) 5 – 1 = 2 (3) 4 = 2 (81)= 162
    • Observando extremos: a 5 = 162.
  • 8. Interpolación de términos: C onsiste en intercalar varios términos entre dos dados . Para poder realizar esta operación se necesita hallar la razón. Los términos interpolados se denominan medios geométricos. Ejemplo: Supongamos que queremos intercalar entre 3 y 96 cuatro números a , b , c y d de manera que 3, a , b , c , d , 14 estén en progresión geométrica. Tenemos que a 1 = 3, a 6 = 96 y el número de términos n = 6. Aplicando la expresión del término general de una progresión geométrica, se tiene que: a 6 = a 1 · r 5 entonces 96 = 3 · r 5 ; dividiendo 96 entre 3 se tiene que 32 = r 5 , 2 5 = r 5 de lo que se deduce que r = 2. Ahora podemos multiplicar cada término para obtener el siguiente y resulta la progresión geométrica : 3, 6, 12, 24, 48, 96.
  • 9. El número de bacterias de un cultivo está aumentando un 25 % cada hora. Si al principio había 300000 ¿Cuántas bacterias habrá al cabo de 5 horas? Rpta: 915527,34 Un padre proyecta colocar en un baúl $ 1 el día que su hijo cumpla un año, e ir duplicando la cantidad sucesivamente en todos los cumpleaños. ¿Cuánto tendrá que colocar el día que su hijo cumpla 18 años? ¿Cuánto habrá en el baúl luego? Rpta: a) $131072 b) $262143
  • 10. PRÁCTICA 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión aritmética es 45 y la diferencia es 4. Halla el primer término. 3. Sabiendo que el primer término de una progresión aritmética es 4, la diferencia 7 y el término n-ésimo 88, halla el número de términos. 4. Halla el primer término de una progresión aritmética y la diferencia, sabiendo que a3 = 24 y a10 = 66.
  • 11. 5. El término sexto de una progresión aritmética es 4 y la diferencia 1/2. Halla el término 20. 6. Interpola cuatro medios aritméticos entre los números 7 y 27. 7. Calcula los lados de un triángulo rectángulo sabiendo que sus medidas, expresadas en metros, están en progresión aritmética de diferencia 3. 8. Halla tres números que estén en progresión aritmética y tales que, aumentados en 5, 4 y 7 unidades respectivamente, sean proporcionales a 5, 6 y 9.