<ul><li>Thorium </li></ul><ul><ul><ul><li>what is is it ? </li></ul></ul></ul><ul><ul><ul><li>it’s an element,  a metal </...
<ul><li>what use is Thorium ? </li></ul><ul><li>not much,  but </li></ul><ul><li>45 years ago,  they found that </li></ul>...
but,  isn’t Uranium... ... the only nuclear fuel ? it is the only one we use... ... with it’s derivative,  Plutonium but T...
<ul><li>is Thorium different... </li></ul><ul><li>... from Uranium (& Plutonium) </li></ul><ul><ul><li>it  is not radio-ac...
<ul><li>is that all  ? </li></ul><ul><ul><li>it makes (a little) short-term waste... </li></ul></ul><ul><ul><ul><ul><li>.....
<ul><li>and is that all  ? </li></ul><ul><ul><li>no,  burning Thorium,  in a ... </li></ul></ul><ul><ul><li>molten salt re...
<ul><li>no,  I didn’t believe it,  either </li></ul><ul><li>so this is the story of </li></ul><ul><li>Thorium </li></ul><u...
Chapter 1 so why might the children want a silver bullet ?
<ul><li>What’s going on... </li></ul><ul><li>... in Europe’s two biggest economies ? </li></ul><ul><li>Germany is phasing ...
<ul><li>Other  Recent News </li></ul><ul><li>Lib-Cons have accepted  IPCC  targets </li></ul><ul><ul><li>...  I nter-gover...
<ul><li>IPCC carbon reduction targets </li></ul><ul><ul><li>34%  by 2020  9 years to go </li></ul></ul><ul><ul><ul><ul><ul...
<ul><li>? can we avoid </li></ul><ul><ul><ul><ul><li>... climate-disaster </li></ul></ul></ul></ul><ul><li>...with just </...
<ul><li>IPCC,  electricity sources,  by 2050 </li></ul><ul><ul><ul><li>renewables  now  6%   up to 40% </li></ul></ul></ul...
<ul><li>+ 3 Centigrade </li></ul><ul><li>Amazon burns </li></ul><ul><li>sea-level rises </li></ul><ul><ul><ul><li>... engu...
Thames barrier +3 Centigrade replacement design ... is 10 miles long
2010 saw a record rise in CO2 emissions now 30 gigatonnes / annum so there is now a 50% chance ... of  +4C  rise by  2100
<ul><li>+ 4 Centigrade </li></ul><ul><li>Arctic ice disappears </li></ul><ul><li>Antarctic melting </li></ul><ul><ul><ul><...
so, the Human Race... ... is at the cross-roads <ul><li>do we just wait for the apocalypse </li></ul><ul><ul><li>... droug...
the biggest problem... ... our children will face climate-change from the CO2 build-up versus the energy-crunch generation...
wikipedia
wikipedia ............ ie Coal, Gas, Oil
<ul><li>UK nuclear </li></ul><ul><li>power stations </li></ul><ul><li>... still operational </li></ul><ul><li>Notice </li>...
UK carbon reduction targets ...extrapolated to 2050 (IPCC) Sizewell B  ...  closes  2035 all other reactors - close by  20...
<ul><li>To meet the IPCC targets for 2050 </li></ul><ul><ul><ul><li>... we must,  without delay </li></ul></ul></ul><ul><l...
Fukushima fuel ... Uranium (& Plutonium) reactor design ... solid-fuel problem ... needs active cooling result  ... hydrog...
<ul><li>So every nation has an urgent problem </li></ul><ul><li>we must phase out fossil fuels </li></ul><ul><ul><li>... o...
so,  the Human Race... ... is at the cross-roads and we do not have much time to decide Thorium liquid-fuelled Uranium Sol...
Chapter 2 so,  why are we only looking at Uranium (& Plutonium) & solid-fuelled reactors ?
<ul><li>To understand where we are now... </li></ul><ul><li>... we must remember how we got here </li></ul><ul><li>The fir...
<ul><li>Manhattan Project  Robert Oppenheimer </li></ul><ul><li>objective - build an atomic bomb </li></ul><ul><ul><li>......
<ul><li>1945  Manhattan Project  -  outcome </li></ul><ul><li>the decision </li></ul><ul><ul><ul><li>... to meet the objec...
<ul><li>Commission's right to seize... </li></ul><ul><ul><li>... &quot;property containing deposits of uranium or  thorium...
<ul><li>USS Nautilus  - 1954 </li></ul><ul><ul><li>first nuclear powered submarine </li></ul></ul><ul><ul><li>PWR - Pressu...
1956 ... Calder Hall, Windscale ... electricity <ul><li>dual purpose </li></ul><ul><ul><li>initially,  mainly for Plutoniu...
<ul><li>Oak Ridge Lab ran the experimental MSR </li></ul><ul><ul><li>... MSRE went live in 1965,  ran until 1969 </li></ul...
<ul><li>Molten Salt technology  ... nothing to do with nuclear </li></ul><ul><ul><li>captures / stores / transfers heat,  ...
<ul><li>by the way </li></ul><ul><li>“ common salt” is Na Cl... </li></ul><ul><ul><li>ie Sodium Chloride </li></ul></ul><u...
<ul><li>1973 ... Alvin Weinberg was fired </li></ul><ul><li>AW was Director at Oak Ridge NL 1945 - 73 </li></ul><ul><li>LW...
problem with high pressure Uranium reactors which need active cooling ---- even after shutdown ---- boiling water can lead...
<ul><li>All reactors  contain  both ... </li></ul><ul><li>unspent fuel ................. makes long-term waste </li></ul><...
<ul><li>Exploding Uranium Reactors </li></ul><ul><li>spread  fission products  (ash) over wide areas </li></ul><ul><ul><li...
<ul><li>In normal (non-exploding) mode </li></ul><ul><li>Uranium (solid-fuel) reactors... </li></ul><ul><li>... only burn ...
<ul><li>The Nuclear Industry... </li></ul><ul><li>... does need strong regulation </li></ul><ul><li>but through a combinat...
<ul><li>The Uranium industry... </li></ul><ul><li>thrived and expanded, in the 70s, 80s </li></ul><ul><ul><li>... there wa...
<ul><li>2006 ... MSRE files,  went public </li></ul><ul><li>Oak Ridge National Laboratory  (ORNL),  Tennessee  </li></ul><...
and here comes the snake-oil moment ? or is that the silver bullet ?
Thorium ...is so energy-dense that you could hold your whole lifetime supply in the palm of your hand
Chapter 3 OK tell me about this silver bullet
<ul><li>one person’s  fuel supply </li></ul><ul><ul><li>... for one year </li></ul></ul><ul><ul><li>Thorium  ...  one gram...
<ul><li>How much fuel is left...?? </li></ul><ul><ul><ul><li>... assuming current usage </li></ul></ul></ul><ul><li>Uraniu...
<ul><li>Where is Thorium  ?? </li></ul><ul><li>“ known reserves” are probably an under-estimate </li></ul><ul><ul><li>... ...
How much Thorium ore is there..?? 5 feet 1 metre @ average  ~  10grams / cubic-metre we are standing on our personal lifet...
the Actinide Series... ... from the Periodic Table Uranium is the heaviest naturally occurring element Thorium is the seco...
Breed   &   Burn  ...  Uranium & Thorium O + n  =  fertile,  absorbs a neutron O - e  =  unstable,  loses an electron  (ie...
<ul><li>OK,  how does it work ? </li></ul><ul><ul><li>... a Thorium Reactor </li></ul></ul><ul><ul><ul><li>... using Molte...
new Thorium-232 Fissile U-233 Core-Fluid Dual-Fluid  LFTR fission products ‘ ash’ half-life = 27 days Pa-233 decays to U-2...
<ul><li>At Oak Ridge Lab... </li></ul><ul><ul><li>... where they ran the MSR </li></ul></ul><ul><ul><li>... they all went ...
Fuel Cycle ... Thorium products ££ Thorium mining tailings convert to metal blanket fluid decay 100% burn LFTR dual-fluid ...
> 3%  U-235 unspent fuel & fission products Fuel Cycle ... Uranium / Plutonium Uranium mining tailings convert to UF6 fabr...
<ul><li>Things that Thorium / LFTR </li></ul><ul><li>...does  not   do,  or need </li></ul><ul><li>fuel enrichment </li></...
<ul><li>Things that Thorium / LFTR </li></ul><ul><li>...does do,  or can do </li></ul><ul><li>uses cheap,  plentiful fuel ...
<ul><li>Uranium / Plutonium </li></ul><ul><li>~ 1GW  (typical) </li></ul><ul><li>large footprint </li></ul><ul><li>difficu...
How Efficient Is Thorium..?? In order to get the same energy out thermal energy  (ie heat)  ............................ x...
Uranium Thorium one tonne of ash fission products one tonne of ash fission products 2222 MW*yr thermal-energy 2222 MW*yr t...
6,000 tonnes of thorium (455 quads) and that’s without  any  extra savings  from local generation  5.3 billion tonnes of c...
So the whole planet’s fuel supply for one year ...  6,000  tonnes  of Thorium ... could be delivered by  150   lorries ......
Chapter 4 Alvin gets the last laugh ---- but will they get the message ?
 
Renewables  -  prospects   time increasing marginal costs cost / MW decreasing marginal CO2 benefits carbon savings “ low-...
<ul><li>2 nd  dash-for-gas ? </li></ul><ul><li>more than 50% of UK fossil capacity... </li></ul><ul><li>... is already gas...
2 nd  Dash for Gas  -  prospects gas replacing coal ? time steady marginal costs cost / MW natural gas replacing coal CHP ...
<ul><li>The Uranium Industry... </li></ul><ul><li>... would (no doubt) be very happy </li></ul><ul><li>... to replace all ...
Uranium & Plutonium  -  prospects Uranium replacing Uranium ?  time cost / MW poor CO2 benefits carbon savings closure of ...
<ul><li>2006  -  Oak Ridge papers scanned >> internet </li></ul><ul><ul><li>... that was the starting gun </li></ul></ul><...
Thorium / LFTR  -  prospects   time decreasing marginal costs - scale cost / MW increasing marginal CO2 benefits carbon sa...
<ul><li>Modern management methods... </li></ul><ul><ul><li>... for comparing options... </li></ul></ul><ul><ul><ul><li>......
Chapter 5 what  next
so,  the Human Race... ... is at the cross-roads and we do not have much time to decide Thorium liquid-fuelled Uranium Sol...
<ul><li>Thorium / LFTR offers the way forward </li></ul><ul><ul><li>... in solving the problems of the energy-crunch </li>...
<ul><li>Who to watch... </li></ul><ul><li>Germany is gambling on renewables </li></ul><ul><li>France is making an each-way...
Thorium is so energy-dense that you could hold your whole lifetime supply in the palm of your hand but only if we invest  ...
<ul><li>Health Warning  ... and acknowledgements </li></ul><ul><li>this is not an engineering paper </li></ul><ul><li>its ...
Uranium / Plutonium solid-fuel  fuel - limited supply  ......... fuel - poor efficiency  ........ needs enrichment  .........
<ul><li>can something be... </li></ul><ul><ul><li>... too good to be true </li></ul></ul><ul><ul><li>... but still be true...
<ul><li>There have been three ... </li></ul><ul><li>... strategic nuclear decisions </li></ul><ul><ul><li>to make bombs fr...
thanks,  Alvin but what about the children ? did they all live happily ever after ?
tune in next year to hear if the children manage to pick up the bullet and slay the carbon dragon
thank you for persevering to the end of something which still seems quite difficult to believe
 
Annex A Re-processing of waste fuel
Reprocessing  ...  Victor Gilinsky (NRC) Reprocessing and recycle: Why renewed interest? How would they relate to Yucca Mo...
Reprocessing – purpose
Reprocessing – of (un)spent fuel
<ul><li>World commercial reprocessing... </li></ul><ul><li>•  Commercial reprocessing and recycle, as carried out in Franc...
<ul><li>Why do the French and others do it?... </li></ul><ul><li>•  First their nuclear bureaucracies are more powerful an...
Yucca Mountain Repository <ul><li>funding for development of Yucca Mountain waste site was terminated... </li></ul><ul><ul...
Annex B Risk Comparisons pollution proliferation (weapons)
Risk .... Types and Phases <ul><li>Phases of Operation.... </li></ul><ul><li>pre-op ... fuel enrichment (eg centrifuges) <...
Risk of Radiation Release / Pollution Phase Uranium/Plutonium Solid Fuel (Rods) Pre-Op Fuel Enrichment (centrifuges) mediu...
Risk of Radiation Release / Pollution Phase Uranium/Plutonium Solid Fuel (Rods) Thorium Liquid Fuel (LFTR) Pre-Op Fuel Enr...
Risk of Proliferation (of weapons) *  probably need to distinguish between “materials bandits” and rogue states (running r...
Risk of Proliferation (of weapons) *  probably need to distinguish between “materials bandits” and rogue states (running r...
Annex C Miscellaneous
nuclear story has many threads commerce industry military science research engineering weapons naval motors electricity ec...
Generation IV... ... new nuclear reactor designs <ul><li>“ Thermal-neutron” reactors </li></ul><ul><ul><li>Very-high-tempe...
Radioactive Decay... .... a Half-Life is how long it takes an isotope .... .... to decay down to half of its initial level...
Radioactivity.... .... distinguish between three timescales.... <ul><li>All  radioactive  isotopes.... </li></ul><ul><ul><...
Carbon Footprints ... of common fuels <ul><li>Derive Thorium / LFTR footprint from Uranium (60), but... </li></ul><ul><ul>...
| 161 including particulate pollution  | disputed, eg post - Chernobyl  | 171,000 at Banqiao  Annual Deaths per TW.Hr  <ul...
Uranium Thorium / LFTR, with all its savings, is predicted to be... ... so much cheaper than Uranium... ... that it would ...
<ul><li>LWR  (BWR & PWR) </li></ul><ul><li>most common types </li></ul><ul><li>solid-fuel (rods) </li></ul><ul><li>need en...
  Author:  European Nuclear Society <ul><li>His concern  ...  solid-fuel reactors can be unstable </li></ul><ul><li>Uraniu...
<ul><li>How good is Uranium.... </li></ul><ul><li>... as a nuclear fuel..?? </li></ul><ul><li>Good news... </li></ul><ul><...
<ul><li>How good is Thorium.... </li></ul><ul><li>... as a nuclear fuel..?? </li></ul><ul><li>Bad news... </li></ul><ul><l...
<ul><li>The US fuel supply for one year ... </li></ul><ul><ul><li>... which is about 20% of planet’s </li></ul></ul><ul><u...
<ul><li>After that,  just to give... </li></ul><ul><ul><li>... only one example ... </li></ul></ul><ul><li>the Lemhi Pass....
rises in Sea-Level, from melting Ice-Sheets Greenland ... 7m West Antarctic ... 6m Antarctic ...61m
more evaporation more cloud more rain more wind more severe events Changes in the Weather growth of deserts forced migrati...
Ocean Currents North Atlantic Conveyor <ul><li>energy equivalent </li></ul><ul><ul><ul><li>... one million nuclear power s...
Breed & Burn O + n  =  fertile,  absorb a neutron  (( O ))  =  fissile   O - e  =  unstable,  lose an electron  (ie  beta ...
first question is Uranium (solid-fuel)... ...the only type of nuclear reactor  ? no there is also Thorium (liquid-fuel)
second question has the alternative been tried ? yes they ran a Thorium reactor (liquid-fuel) for five years
third question was the alternative successful ? yes it was much more efficient it was much safer it did not produce long-t...
Upcoming SlideShare
Loading in...5
×

Short thorium-15

1,258

Published on

Presentation done by John Mcgrother in support of a motion on Thorium originally presented to Buxton Branch, and now been considered at the High Peak GC Meeting

Published in: News & Politics
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,258
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
50
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Short thorium-15

  1. 2. <ul><li>Thorium </li></ul><ul><ul><ul><li>what is is it ? </li></ul></ul></ul><ul><ul><ul><li>it’s an element, a metal </li></ul></ul></ul><ul><ul><ul><li>... like lead or silver </li></ul></ul></ul><ul><ul><ul><li>is there much of it ? </li></ul></ul></ul><ul><ul><ul><li>... it’s more common than tin </li></ul></ul></ul><ul><ul><ul><li>... and it’s all over the planet </li></ul></ul></ul>
  2. 3. <ul><li>what use is Thorium ? </li></ul><ul><li>not much, but </li></ul><ul><li>45 years ago, they found that </li></ul><ul><li>it is, by far </li></ul><ul><li>the most powerful fuel </li></ul><ul><li>on the planet </li></ul><ul><li>but kept it a secret </li></ul>
  3. 4. but, isn’t Uranium... ... the only nuclear fuel ? it is the only one we use... ... with it’s derivative, Plutonium but Thorium is also a nuclear fuel
  4. 5. <ul><li>is Thorium different... </li></ul><ul><li>... from Uranium (& Plutonium) </li></ul><ul><ul><li>it is not radio-active, ie fissile </li></ul></ul><ul><ul><li>its reactors are much safer... </li></ul></ul><ul><ul><ul><ul><li>... they can’t explode </li></ul></ul></ul></ul><ul><ul><li>it leaves no unspent fuel, so... </li></ul></ul><ul><ul><ul><ul><li>... it makes no long-term waste </li></ul></ul></ul></ul><ul><ul><li>you can’t make a Thorium bomb </li></ul></ul>
  5. 6. <ul><li>is that all ? </li></ul><ul><ul><li>it makes (a little) short-term waste... </li></ul></ul><ul><ul><ul><ul><li>... but most of this ash is valuable </li></ul></ul></ul></ul><ul><ul><ul><ul><li>... used in medicine and hi-tech </li></ul></ul></ul></ul><ul><ul><li>it would make electricity... </li></ul></ul><ul><ul><ul><ul><li>... cheaper than from coal </li></ul></ul></ul></ul><ul><ul><li>it is as green as renewables </li></ul></ul>
  6. 7. <ul><li>and is that all ? </li></ul><ul><ul><li>no, burning Thorium, in a ... </li></ul></ul><ul><ul><li>molten salt reactor </li></ul></ul><ul><ul><li>you can destroy </li></ul></ul><ul><ul><li>all the unspent fuel from all </li></ul></ul><ul><ul><li>the Uranium (& Plutonium) reactors </li></ul></ul><ul><ul><li>which would otherwise </li></ul></ul><ul><ul><li>last 240,000 years </li></ul></ul>
  7. 8. <ul><li>no, I didn’t believe it, either </li></ul><ul><li>so this is the story of </li></ul><ul><li>Thorium </li></ul><ul><ul><li>but first ... </li></ul></ul>
  8. 9. Chapter 1 so why might the children want a silver bullet ?
  9. 10. <ul><li>What’s going on... </li></ul><ul><li>... in Europe’s two biggest economies ? </li></ul><ul><li>Germany is phasing out all nuclear power </li></ul><ul><ul><li>... to close all reactors by 2022 </li></ul></ul><ul><li>80% of France’s electricity is nuclear </li></ul><ul><ul><li>... 58 reactors currently operational </li></ul></ul><ul><ul><li>... 75% of citizens want to close them </li></ul></ul>
  10. 11. <ul><li>Other Recent News </li></ul><ul><li>Lib-Cons have accepted IPCC targets </li></ul><ul><ul><li>... I nter-governmental P anel on C limate C hange </li></ul></ul><ul><li>UK Greens seem to have accepted that </li></ul><ul><ul><li>renewables won’t solve the energy-crunch (alone) </li></ul></ul><ul><ul><li>carbon-targets imply some nuclear contribution </li></ul></ul><ul><li>post-Fukushima </li></ul><ul><ul><li>... safety issue is back on the agenda </li></ul></ul><ul><li>Arab-spring brings focus on oil-supply </li></ul><ul><li>shale-gas (fracking) is dressing-up as “green” </li></ul><ul><li>500 died in US tornados </li></ul><ul><li>big CO2 increases in 2010 </li></ul><ul><li>business as usual ? </li></ul>
  11. 12. <ul><li>IPCC carbon reduction targets </li></ul><ul><ul><li>34% by 2020 9 years to go </li></ul></ul><ul><ul><ul><ul><ul><li>... already agreed </li></ul></ul></ul></ul></ul><ul><ul><li>60% by 2030 19 years to go </li></ul></ul><ul><ul><ul><ul><ul><li>... already agreed </li></ul></ul></ul></ul></ul><ul><ul><li>80% by 2050 39 years to go </li></ul></ul><ul><ul><ul><ul><ul><li>... now agreed, by Lib-Cons </li></ul></ul></ul></ul></ul><ul><li>but no-one has said how - yet ! </li></ul>
  12. 13. <ul><li>? can we avoid </li></ul><ul><ul><ul><ul><li>... climate-disaster </li></ul></ul></ul></ul><ul><li>...with just </li></ul><ul><li>renewables </li></ul><ul><ul><ul><li>... solar, wind, tidal, hydro, biomass </li></ul></ul></ul><ul><li>CCS </li></ul><ul><ul><ul><li>... carbon-capture & sequestration </li></ul></ul></ul><ul><li>no </li></ul><ul><li>according to the IPCC </li></ul>
  13. 14. <ul><li>IPCC, electricity sources, by 2050 </li></ul><ul><ul><ul><li>renewables now 6% up to 40% </li></ul></ul></ul><ul><ul><ul><li>nuclear now 16% up to 40% </li></ul></ul></ul><ul><ul><ul><li>fossil fuels now 76% down to 20% </li></ul></ul></ul><ul><ul><li>why so drastic ? </li></ul></ul>
  14. 15. <ul><li>+ 3 Centigrade </li></ul><ul><li>Amazon burns </li></ul><ul><li>sea-level rises </li></ul><ul><ul><ul><li>... engulfs London, New York, & islands </li></ul></ul></ul><ul><ul><ul><li>... Bangladesh, etc ... went earlier </li></ul></ul></ul><ul><li>Australia, west-US, southern Africa </li></ul><ul><ul><ul><li>... become deserts </li></ul></ul></ul><ul><li>billions forced to move </li></ul><ul><ul><ul><li>... loss of agricultural land </li></ul></ul></ul><ul><li>30% - 50% less water in Africa, Mediterranean </li></ul>
  15. 16. Thames barrier +3 Centigrade replacement design ... is 10 miles long
  16. 17. 2010 saw a record rise in CO2 emissions now 30 gigatonnes / annum so there is now a 50% chance ... of +4C rise by 2100
  17. 18. <ul><li>+ 4 Centigrade </li></ul><ul><li>Arctic ice disappears </li></ul><ul><li>Antarctic melting </li></ul><ul><ul><ul><li>... gives 5m rise in sea level </li></ul></ul></ul><ul><li>Italy, Spain, Greece, Turkey become deserts </li></ul><ul><li>mid-Europe reaches 50C in summer </li></ul><ul><li>southern-England’s summer climate </li></ul><ul><ul><ul><li>... it would resemble southern Morocco, now </li></ul></ul></ul><ul><li>Arctic permafrost enters danger-zone </li></ul><ul><ul><li>... Methane & CO2 released to atmosphere </li></ul></ul><ul><ul><li>... Methane is x 23 stronger greenhouse gas </li></ul></ul>
  18. 19. so, the Human Race... ... is at the cross-roads <ul><li>do we just wait for the apocalypse </li></ul><ul><ul><li>... drought, floods, famine, refugees, wars </li></ul></ul>avoid climate-change disaster insert head in the sand
  19. 20. the biggest problem... ... our children will face climate-change from the CO2 build-up versus the energy-crunch generation and conservation
  20. 21. wikipedia
  21. 22. wikipedia ............ ie Coal, Gas, Oil
  22. 23. <ul><li>UK nuclear </li></ul><ul><li>power stations </li></ul><ul><li>... still operational </li></ul><ul><li>Notice </li></ul><ul><li>they are all on the coast </li></ul><ul><li>away from people, safer </li></ul><ul><li>extra transmission losses </li></ul>Sizewell B ... closes 2035 all other reactors ... by 2023 Dungeness Hinkley Point Oldbury Wylfa Hunterston Heysham 1 & 2 Sizewell Hartlepool Torness AGR PWR Magnox
  23. 24. UK carbon reduction targets ...extrapolated to 2050 (IPCC) Sizewell B ... closes 2035 all other reactors - close by 2023 2020 2030 2050 wikipedia ...... ie Coal, Gas, Oil Coal, Gas, Oil Nuclear but all new Renewables
  24. 25. <ul><li>To meet the IPCC targets for 2050 </li></ul><ul><ul><ul><li>... we must, without delay </li></ul></ul></ul><ul><li>revolutionise electricity generation, the hard bit </li></ul><ul><ul><li>renewables x 7, but law of diminishing returns </li></ul></ul><ul><ul><li>nuclear x 3, but closing all existing reactors </li></ul></ul><ul><li>the necessary bit </li></ul><ul><ul><li>super-grid, local generation, CHP </li></ul></ul><ul><ul><li>storage, smart-consumers, reduce demand </li></ul></ul><ul><ul><li>the easy bit ? </li></ul></ul><ul><ul><ul><li>... closing 75% of all fossil-fuelled power stations </li></ul></ul></ul><ul><li>limit & manage climate change </li></ul><ul><ul><li>... storms, droughts, floods, refugees, resources </li></ul></ul><ul><li>but how can we meet those targets ?? </li></ul>
  25. 26. Fukushima fuel ... Uranium (& Plutonium) reactor design ... solid-fuel problem ... needs active cooling result ... hydrogen explosions ... fuel melt-downs ... contamination
  26. 27. <ul><li>So every nation has an urgent problem </li></ul><ul><li>we must phase out fossil fuels </li></ul><ul><ul><li>... or we’ll roast & drown the planet </li></ul></ul><ul><li>renewables (alone) won’t keep the lights on </li></ul><ul><li>So why is “nuclear” not the answer </li></ul><ul><ul><li>... where nuclear = Uranium (& Plutonium) </li></ul></ul><ul><li>reactors can explode </li></ul><ul><li>99% of fuel is left “unspent” </li></ul><ul><ul><li>... making long-term radioactive waste </li></ul></ul><ul><li>fuel supply may be limited, precarious ? </li></ul><ul><li>enrichment and reprocessing are dangerous </li></ul><ul><ul><li>... pollution, weapons proliferation risks </li></ul></ul>
  27. 28. so, the Human Race... ... is at the cross-roads and we do not have much time to decide Thorium liquid-fuelled Uranium Solid-fuelled
  28. 29. Chapter 2 so, why are we only looking at Uranium (& Plutonium) & solid-fuelled reactors ?
  29. 30. <ul><li>To understand where we are now... </li></ul><ul><li>... we must remember how we got here </li></ul><ul><li>The first 30 years ... on which, more to follow </li></ul><ul><li>1941 - Manhattan Project </li></ul><ul><li>1946 - McMahon Act, weapons build-up </li></ul><ul><li>1954 - naval propulsion, subs, carriers </li></ul><ul><li>1956 - electricity, Uranium solid-fuel </li></ul><ul><li>1965 - Molten Salt Reactor - Weinberg </li></ul><ul><li>1973 - Nixon sacks Weinberg </li></ul><ul><li>The next 40 years - Weinberg vindicated </li></ul><ul><ul><li>1979 - Three Mile Island </li></ul></ul><ul><ul><li>1986 - Chernobyl </li></ul></ul><ul><ul><li>2011 - Fukushima </li></ul></ul>
  30. 31. <ul><li>Manhattan Project Robert Oppenheimer </li></ul><ul><li>objective - build an atomic bomb </li></ul><ul><ul><li>... before Hitler does </li></ul></ul><ul><li>only 2 nuclear “fuels” </li></ul><ul><ul><li>... Uranium, Thorium </li></ul></ul><ul><li>but bombs need fissile isotopes </li></ul><ul><ul><li>... heat, neutrons >> chain reaction (( O )) </li></ul></ul><ul><li>Uranium is fissile , twice over </li></ul><ul><ul><li><1% is U-235 (needs enrichment) >> (( O )) </li></ul></ul><ul><ul><li>>99% is U-238 ( fertile ) >> Plutonium >> (( O )) </li></ul></ul><ul><li>Thorium is not fissile , it can’t make a bomb </li></ul><ul><ul><li>... Th-232 ( fertile ) >> U-233 (( O )) </li></ul></ul>
  31. 32. <ul><li>1945 Manhattan Project - outcome </li></ul><ul><li>the decision </li></ul><ul><ul><ul><li>... to meet the objective </li></ul></ul></ul><ul><ul><ul><li>... make bombs from Uranium </li></ul></ul></ul><ul><ul><ul><li>Hiroshima ... Uranium-235 </li></ul></ul></ul><ul><ul><ul><li>Nagasaki .... Plutonium-239 </li></ul></ul></ul><ul><li>BTW ... Manhattan Project also mined Thorium </li></ul><ul><ul><ul><li>3,200 tonnes </li></ul></ul></ul><ul><ul><ul><li>but never used it </li></ul></ul></ul><ul><ul><ul><li>it is still in Nevada </li></ul></ul></ul>
  32. 33. <ul><li>Commission's right to seize... </li></ul><ul><ul><li>... &quot;property containing deposits of uranium or thorium ” </li></ul></ul><ul><li>It defined a new legal term “ restricted data ” as “ all data concerning the manufacture or utilisation of atomic weapons, the production of fissionable material, or the use of fissionable material in the production of power ” </li></ul><ul><li>The phrase “ all data ” included every suggestion, speculation, scenario, or rumor - past, present, or future, regardless of its source, or even of its accuracy - unless it was specifically declassified </li></ul><ul><li>a culture of secrecy ... not just covering weapons </li></ul><ul><li>but including electricity generation, thorium </li></ul><ul><li>Atomic Energy (McMahon) Act </li></ul><ul><li>... formed the Nuclear Regulatory Commission </li></ul>
  33. 34. <ul><li>USS Nautilus - 1954 </li></ul><ul><ul><li>first nuclear powered submarine </li></ul></ul><ul><ul><li>PWR - Pressurised Water Reactor </li></ul></ul><ul><ul><li>built by Westinghouse </li></ul></ul><ul><li>USS Enterprise - 1962 </li></ul><ul><ul><li>first nuclear powered aircraft carrier </li></ul></ul><ul><ul><li>8 x PWRs (A2W) </li></ul></ul><ul><ul><li>used U-235 enriched to 93% </li></ul></ul><ul><ul><li>built by Westinghouse </li></ul></ul>1950s ... Nuclear-Powered US Navy <ul><li>convenient operational model </li></ul><ul><ul><li>at sea, sealed power units, Uranium, solid fuelled </li></ul></ul><ul><ul><li>on land, fuel enrichment & reprocessing </li></ul></ul><ul><ul><li>>> weapons grade material </li></ul></ul><ul><li>the first use of nuclear power reactors </li></ul><ul><li>all Uranium, solid fuelled </li></ul>
  34. 35. 1956 ... Calder Hall, Windscale ... electricity <ul><li>dual purpose </li></ul><ul><ul><li>initially, mainly for Plutonium </li></ul></ul><ul><ul><li>then, for Plutonium and electricity (1964) </li></ul></ul><ul><ul><li>finally, just for electricity (1995 – 2003) </li></ul></ul><ul><li>US ... Shippingport reactor (1957) - electricity </li></ul><ul><li>Russia ... Obninsk reactor (1954) - electricity </li></ul><ul><li>all Uranium, solid-fuelled </li></ul>
  35. 36. <ul><li>Oak Ridge Lab ran the experimental MSR </li></ul><ul><ul><li>... MSRE went live in 1965, ran until 1969 </li></ul></ul><ul><li>proved the basic concepts, including </li></ul><ul><ul><li>working at atmospheric pressure, unlike U/Pu-solid </li></ul></ul><ul><ul><li>fluid fuel, unlike U/Pu-solid </li></ul></ul><ul><ul><li>passive cooling, unlike U/Pu-solid </li></ul></ul><ul><ul><li>no long-term waste, complete-burn, unlike U/Pu-solid </li></ul></ul><ul><ul><li>burned U-233 (from Thorium), plus U-235, Pu-239 </li></ul></ul><ul><ul><li>produced fission-products (ash), same as U/Pu-solid </li></ul></ul><ul><li>operated 24/5 ... switched off at the weekends </li></ul><ul><ul><li>... would have been handy at Chernobyl, Fukushima </li></ul></ul><ul><li>1970-76 ... refined the design – for a LFTR </li></ul><ul><ul><li>... ie an operational L iquid- F luoride T horium R eactor </li></ul></ul><ul><li>Oak Ridge (National Lab) Director was Alvin Weinberg </li></ul>1965... Molten Salt Reactor U Th Th
  36. 37. <ul><li>Molten Salt technology ... nothing to do with nuclear </li></ul><ul><ul><li>captures / stores / transfers heat, to turbines </li></ul></ul><ul><ul><li>stays liquid to very high temperatures, 1400C </li></ul></ul><ul><ul><li>replaces water, which boils at 100C </li></ul></ul>solar power, mirrors ... California <ul><li>They found that... </li></ul><ul><li>... it stored enough heat during the day </li></ul><ul><ul><li>... in the molten salt </li></ul></ul><ul><ul><ul><li>... to keep the turbines running </li></ul></ul></ul><ul><ul><ul><ul><li>... through the night </li></ul></ul></ul></ul><< heat collector ^^ hot & cool salt tanks, I think ?
  37. 38. <ul><li>by the way </li></ul><ul><li>“ common salt” is Na Cl... </li></ul><ul><ul><li>ie Sodium Chloride </li></ul></ul><ul><li>but to chemists, the term “salt” ... </li></ul><ul><li>... covers a whole class of compounds </li></ul><ul><li>they found that the best salt for a LFTR... </li></ul><ul><ul><li>... is a combination of... </li></ul></ul><ul><ul><ul><li>Lithium Fluoride Li F </li></ul></ul></ul><ul><ul><ul><li>Beryllium Fluoride Be F2 </li></ul></ul></ul>
  38. 39. <ul><li>1973 ... Alvin Weinberg was fired </li></ul><ul><li>AW was Director at Oak Ridge NL 1945 - 73 </li></ul><ul><li>LWR (PWR and BWR) developed at Oak Ridge </li></ul><ul><li>AW held patents to both PWR and BWR </li></ul><ul><ul><li>... majority of today’s commercial nuclear reactors </li></ul></ul><ul><li>AW co-authored the first Nuclear Reactor textbook </li></ul><ul><ul><li>... The Physical Theory of Neutron Chain Reactors </li></ul></ul><ul><ul><li>... with Nobel Laureate Eugene Wigner, 1958 </li></ul></ul><ul><li>AW ran the Molten Salt Reactor, 1965 - 69 (MSRE) </li></ul><ul><li>1973 ... AW was fired, by Nixon administration </li></ul><ul><ul><li>... for arguing that MSR was safe, and LWR was not </li></ul></ul><ul><li>all MSRE records were kept secret </li></ul><ul><ul><li>... even other National Labs knew nothing of MSRE </li></ul></ul><ul><li>and that remained the situation for the next 33 years </li></ul>
  39. 40. problem with high pressure Uranium reactors which need active cooling ---- even after shutdown ---- boiling water can lead to hydrogen explosions and fuel melt-downs
  40. 41. <ul><li>All reactors contain both ... </li></ul><ul><li>unspent fuel ................. makes long-term waste </li></ul><ul><li>fission products (ash) ... makes medium-term waste </li></ul><ul><li>So, if they could explode ... </li></ul><ul><ul><li>... they would spread both types </li></ul></ul><ul><ul><li>... locally, and even globally </li></ul></ul><ul><li>Uranium solid-fuelled reactors </li></ul><ul><li>can explode </li></ul><ul><li>Thorium liquid-fuelled reactors </li></ul><ul><li>cannot explode </li></ul>
  41. 42. <ul><li>Exploding Uranium Reactors </li></ul><ul><li>spread fission products (ash) over wide areas </li></ul><ul><ul><li>eg Caesium(55), Strontium(38), Iodine(53) </li></ul></ul><ul><ul><li>medium-term waste </li></ul></ul><ul><ul><li>90% gone in100 years, all gone in 300 years </li></ul></ul><ul><ul><li>Iodine is all gone in 3 months ... thyroid threat </li></ul></ul><ul><li>also spread unspent fuel over wide areas </li></ul><ul><ul><li>eg Uranium(92), Plutonium(94) </li></ul></ul><ul><ul><li>long-term waste </li></ul></ul><ul><ul><li>lasts 240,000 years </li></ul></ul>
  42. 43. <ul><li>In normal (non-exploding) mode </li></ul><ul><li>Uranium (solid-fuel) reactors... </li></ul><ul><li>... only burn ~ 1% of their fuel </li></ul><ul><li>... so leave ~ 99% as unspent fuel </li></ul><ul><li>... this long-term waste... </li></ul><ul><ul><li>... is bundled up, with the ash </li></ul></ul><ul><ul><li>... in the old extracted fuel-rods </li></ul></ul><ul><li>For comparison, non-exploding ... </li></ul><ul><li>Thorium (liquid-fuel) reactors... </li></ul><ul><li>... burn 100% of their fuel </li></ul><ul><li>... so only produce ... </li></ul><ul><ul><li>... medium-term fission products, ie ash </li></ul></ul>
  43. 44. <ul><li>The Nuclear Industry... </li></ul><ul><li>... does need strong regulation </li></ul><ul><li>but through a combination of </li></ul><ul><ul><li>secrecy </li></ul></ul><ul><ul><li>restrictive licensing & investment </li></ul></ul><ul><ul><li>vested interests ... </li></ul></ul><ul><ul><ul><li>... government, military, industrial </li></ul></ul></ul><ul><li>it seems to have become... </li></ul><ul><ul><li>... the Uranium Industry </li></ul></ul>
  44. 45. <ul><li>The Uranium industry... </li></ul><ul><li>thrived and expanded, in the 70s, 80s </li></ul><ul><ul><li>... there was no other game in town </li></ul></ul><ul><li>but has suffered a series of setbacks </li></ul><ul><ul><li>... they stopped building new reactors </li></ul></ul><ul><li>out of about 500 nuclear power stations </li></ul><ul><ul><li>... 7 have had “uncontrolled incidents” </li></ul></ul><ul><li>to-date, notably... </li></ul><ul><ul><li>Windscale </li></ul></ul><ul><ul><li>Three Mile Island </li></ul></ul><ul><ul><li>Chernobyl </li></ul></ul><ul><ul><li>Fukushima </li></ul></ul><ul><li>all Uranium solid-fuelled </li></ul>
  45. 46. <ul><li>2006 ... MSRE files, went public </li></ul><ul><li>Oak Ridge National Laboratory (ORNL), Tennessee </li></ul><ul><li>the Molten Salt Reactor Experiment </li></ul><ul><ul><li>... which ORNL ran from 1965 to 1969 </li></ul></ul><ul><ul><li>... and the files had been kept secret </li></ul></ul><ul><li>the papers were scanned onto 5 CDs </li></ul><ul><ul><li>... by Kirk Sorensen, et al </li></ul></ul><ul><ul><li>... when given access in 2002 </li></ul></ul><ul><li>2006 ... MSRE files uploaded to the Internet </li></ul><ul><li>this kick-started the interest in Thorium </li></ul><ul><li>in the modern era </li></ul>
  46. 47. and here comes the snake-oil moment ? or is that the silver bullet ?
  47. 48. Thorium ...is so energy-dense that you could hold your whole lifetime supply in the palm of your hand
  48. 49. Chapter 3 OK tell me about this silver bullet
  49. 50. <ul><li>one person’s fuel supply </li></ul><ul><ul><li>... for one year </li></ul></ul><ul><ul><li>Thorium ... one gram </li></ul></ul><ul><ul><li>----------------------- </li></ul></ul><ul><ul><li>Uranium ... ¼ kg </li></ul></ul><ul><ul><li>(250 grams) </li></ul></ul><ul><ul><li>----------------------- </li></ul></ul><ul><ul><li>Coal ... 3.2 tonnes </li></ul></ul>
  50. 51. <ul><li>How much fuel is left...?? </li></ul><ul><ul><ul><li>... assuming current usage </li></ul></ul></ul><ul><li>Uranium without breeding Plute .. about 100 years </li></ul><ul><li>coal ............................. about 400 years </li></ul><ul><ul><ul><li>...but if they burn it all (without CCS)... </li></ul></ul></ul><ul><ul><ul><ul><li>...the planet will become uninhabitable </li></ul></ul></ul></ul><ul><li>How much Thorium is there </li></ul><ul><ul><ul><li>... compared to Uranium </li></ul></ul></ul><ul><li>ore ........... 4 times as much, known, so far </li></ul><ul><li>heat .......... 1000 times, 100,000 years </li></ul><ul><li>electricity.. 1600 times, 160,000 years </li></ul><ul><li>and Thorium is spread all over the planet </li></ul>
  51. 52. <ul><li>Where is Thorium ?? </li></ul><ul><li>“ known reserves” are probably an under-estimate </li></ul><ul><ul><li>... not much incentive to search, yet ... low value </li></ul></ul>3,200 tonnes, Manhattan left-overs, Nevada “ rare-earth” mines ... tailings are high in Thorium Country Known Reserves (tonnes) United States 440,000 Australia 300,000 Brazil 16,000 Canada 100,000 India 290,000 to 650,000 Malaysia 4,500 South Africa 35,000 Other Countries 90,000 World Total 1,300,000 to 1,660,000
  52. 53. How much Thorium ore is there..?? 5 feet 1 metre @ average ~ 10grams / cubic-metre we are standing on our personal lifetime supply
  53. 54. the Actinide Series... ... from the Periodic Table Uranium is the heaviest naturally occurring element Thorium is the second ... but there’s more of it the rest (and above Plutonium) are too unstable to survive Atomic Number Element Code Most Common Isotope Half-Life 89 Actinium Ac 227 22 years 90 Thorium Th 232 14 billion years 91 Proactinium Pa 231 32,760 years 92 Uranium U 238 4.5 billion years 93 Neptunium Np 237 2.1 million years 94 Plutonium Pu 244 80 million years
  54. 55. Breed & Burn ... Uranium & Thorium O + n = fertile, absorbs a neutron O - e = unstable, loses an electron (ie beta decay) ((O)) = fissile, splits up, giving off heat U-235 fissile U-238 fertile Th-232 fertile atomic no > Th - 90 PA - 91 U - 92 Np - 93 Pu - 94 isotope 239 O - e > O - e > (( O )) 238 O + n ^ 237 236 235 (( O )) 234 233 O - e > O - e > (( O )) 232 O + n ^
  55. 56. <ul><li>OK, how does it work ? </li></ul><ul><ul><li>... a Thorium Reactor </li></ul></ul><ul><ul><ul><li>... using Molten Salt </li></ul></ul></ul><ul><li>it’s known as a LFTR </li></ul><ul><li>pronounced “lifter” </li></ul><ul><li>L iquid F luoride T horium R eactor </li></ul>
  56. 57. new Thorium-232 Fissile U-233 Core-Fluid Dual-Fluid LFTR fission products ‘ ash’ half-life = 27 days Pa-233 decays to U-233 Heat Exchanger & Turbine drain tanks U-233 Pa-233 U-233 Fertile Breeder Fluid Waste Separator Thorium-232 Blanket freeze-plug passive cooling neutrons neutrons Fissile Separator 100% burn ... ... no unspent fuel cool salt Th-232 hot salt neutrons neutrons fissile-trigger fan
  57. 58. <ul><li>At Oak Ridge Lab... </li></ul><ul><ul><li>... where they ran the MSR </li></ul></ul><ul><ul><li>... they all went home for the weekend </li></ul></ul><ul><li>When they switched off the power </li></ul><ul><ul><li>... that included the fan </li></ul></ul><ul><ul><li>... which kept the freeze plug frozen </li></ul></ul><ul><li>The hot salt just ran... </li></ul><ul><ul><li>... into the drain tanks </li></ul></ul><ul><li>The chain reaction ((O)) </li></ul><ul><ul><li>... relies on compact geometry </li></ul></ul><ul><li>so it stopped ... passive cooling </li></ul>freeze-plug
  58. 59. Fuel Cycle ... Thorium products ££ Thorium mining tailings convert to metal blanket fluid decay 100% burn LFTR dual-fluid reactor surface storage 300 year waste 83% 17% fission products 100% fuel disposal after 10 years
  59. 60. > 3% U-235 unspent fuel & fission products Fuel Cycle ... Uranium / Plutonium Uranium mining tailings convert to UF6 fabricate fuel partial burn solid-fuel reactor vitrify 240,000 year waste fuel rods Depleted Uranium waste long & medium reprocess Plutonium waste long & medium Uranium Plutonium ?? ?? long & medium waste MOX enrich 0.7% U-235 only once!
  60. 61. <ul><li>Things that Thorium / LFTR </li></ul><ul><li>...does not do, or need </li></ul><ul><li>fuel enrichment </li></ul><ul><ul><li>... it comes out of the ground as 100% fuel </li></ul></ul><ul><li>partial burn – leaving unspent fuel </li></ul><ul><li>high pressure reactor – it runs at atmospheric </li></ul><ul><li>high pressure containment building </li></ul><ul><ul><li>... it cannot explode </li></ul></ul><ul><li>active cooling </li></ul><ul><ul><li>... LFTR design provides passive cooling </li></ul></ul><ul><li>reprocessing – no unspent fuel in the waste </li></ul><ul><li>long-term waste management – there is none </li></ul><ul><li>make Plutonium </li></ul>
  61. 62. <ul><li>Things that Thorium / LFTR </li></ul><ul><li>...does do, or can do </li></ul><ul><li>uses cheap, plentiful fuel - not radioactive </li></ul><ul><li>runs safe, self-limiting </li></ul><ul><ul><li>... at atmospheric pressure </li></ul></ul><ul><ul><li>... it’s already “melted-down” </li></ul></ul><ul><ul><li>... “negative feedback coefficient” - cannot explode </li></ul></ul><ul><ul><li>... works like an accelerator (within one minute) </li></ul></ul><ul><li>makes green electricity </li></ul><ul><ul><li>... runs hotter, more efficient generator, less cooling </li></ul></ul><ul><ul><li>... can make hydrogen >> petrol, NH4, fertilisers (eating CO2) </li></ul></ul><ul><li>makes medium-term waste </li></ul><ul><ul><li>... 83% can be isolated and sold - medicine, hi-tech </li></ul></ul><ul><ul><li>... compact residue ... 17% (gone in 300 years) </li></ul></ul><ul><li>can burn up existing long-term waste ... U-235, Pu-239 </li></ul><ul><li>allows large / small power units, safe and local </li></ul><ul><ul><li>... reduced transmission losses </li></ul></ul><ul><li>can support CHP, combined heat & power </li></ul>
  62. 63. <ul><li>Uranium / Plutonium </li></ul><ul><li>~ 1GW (typical) </li></ul><ul><li>large footprint </li></ul><ul><li>difficult siting </li></ul><ul><li>Thorium / LFTR </li></ul><ul><li>~ 10MW >> ~ ?GW </li></ul><ul><li>small footprint </li></ul><ul><li>easy siting </li></ul>LFTRs could be manufactured on a production-line like aircraft
  63. 64. How Efficient Is Thorium..?? In order to get the same energy out thermal energy (ie heat) ............................ x 250 electricity ( at factory-gate value ) .................. x 320 Electricity (with savings from “local generation” ) user-value (transmission losses, ½ the 16%? ) ..... x 350 CHP (waste heat, deliver ½? ) ........................... x 380 Combination of both “local savings” ( 28% ) ie ½ transmission losses & ½ CHP ......... x 410 this is a comparison of materials, not costs How much more Uranium do we need to put in ??
  64. 65. Uranium Thorium one tonne of ash fission products one tonne of ash fission products 2222 MW*yr thermal-energy 2222 MW*yr thermal-energy 1111 MW*yr electricity 740 MW*yr electricity one tonne of natural thorium 33.4t uranium-238 0.3t uranium-235 0.3t plutonium 1111 MW*yr waste heat 1482 MW*yr waste heat 35t enriched uranium (1.15 t U-235) 215t depleted uranium (0.6t U-235) 250t natural uranium (1.75 t U-235) 35 tonnes waste lasts 240, 000 years 170 kg waste lasts 300 years 830 kg £££ valuable isotopes 33% 50% equating fission products Numbers courtesy of Kirk Sorensen equating thermal energy
  65. 66. 6,000 tonnes of thorium (455 quads) and that’s without any extra savings from local generation 5.3 billion tonnes of coal (128 quads) 31.1 billion barrels of oil (180 quads) 2.92 trillion m 3 of natural gas (105 quads) 65,000 tonnes of uranium ore (24 quads) World Energy Consumption … 2007 The Future … Energy from Thorium … total 437 quads quad = quadrillion BTU (10 ) {ie one million billion BTU} or 33.5 GigaWatt-Years 15 Numbers courtesy of Kirk Sorensen
  66. 67. So the whole planet’s fuel supply for one year ... 6,000 tonnes of Thorium ... could be delivered by 150 lorries ... (eg @ 40 per) But including “local generation savings” ... this comes down to 117 lorries
  67. 68. Chapter 4 Alvin gets the last laugh ---- but will they get the message ?
  68. 70. Renewables - prospects time increasing marginal costs cost / MW decreasing marginal CO2 benefits carbon savings “ low-hanging fruit” ... the long-term downside so set off ... but don’t expect to go all the way capacity MW OK ???
  69. 71. <ul><li>2 nd dash-for-gas ? </li></ul><ul><li>more than 50% of UK fossil capacity... </li></ul><ul><li>... is already gas </li></ul><ul><li>natural-gas carbon-footprint... </li></ul><ul><li>... is about 35% of coal </li></ul><ul><li>but fracking-gas footprint is > than coal </li></ul><ul><li>In a 2 nd dash-for-gas, assume for example ... </li></ul><ul><li>½ of residual coal is converted to gas </li></ul><ul><li>and ½ of new gas includes CHP </li></ul><ul><li>but if ½ of gas goes natural >> fracking </li></ul><ul><li>then, total carbon-footprint ... </li></ul><ul><li>would increase !! </li></ul>
  70. 72. 2 nd Dash for Gas - prospects gas replacing coal ? time steady marginal costs cost / MW natural gas replacing coal CHP would reduce foot-print high fracking % might get worse than coal need to move away from fossil fuels MW capacity fracking gas replacing natural gas carbon savings
  71. 73. <ul><li>The Uranium Industry... </li></ul><ul><li>... would (no doubt) be very happy </li></ul><ul><li>... to replace all / most existing reactors </li></ul><ul><li>... with Uranium (solid-fuel) of course </li></ul><ul><li>That may even be... </li></ul><ul><li>... the most they could hope to do </li></ul><ul><li>They would make a lot of £££, but ... </li></ul><ul><li>that would not reduce carbon </li></ul>
  72. 74. Uranium & Plutonium - prospects Uranium replacing Uranium ? time cost / MW poor CO2 benefits carbon savings closure of obsolete nuclear reactors would drive the schedule ? MW steady marginal costs replacing nuclear replacing coal
  73. 75. <ul><li>2006 - Oak Ridge papers scanned >> internet </li></ul><ul><ul><li>... that was the starting gun </li></ul></ul><ul><li>scientist & engineers now working on updated designs </li></ul><ul><ul><li>... see Washington Conference, TEAC, May 2011 </li></ul></ul><ul><li>EURATOM / France have Project EVOL </li></ul><ul><ul><li>... working towards a prototype LFTR in 2013 </li></ul></ul><ul><li>other work in Russia, Japan, Czech Rep </li></ul><ul><li>India is looking at Thorium, but solid-fuel </li></ul><ul><li>China (Jan 2011) launched a Thorium / LFTR program </li></ul><ul><li>interest is growing - despite inertia of governments </li></ul>LFTRs ... who is doing what..?? U Th Th
  74. 76. Thorium / LFTR - prospects time decreasing marginal costs - scale cost / MW increasing marginal CO2 benefits carbon savings slow start ... rapid growth ... no ceilings replacement priorities ... coal, fracking, oil, gas Uranium will phase itself out MW replacing nuclear & coal replacing fossil
  75. 77. <ul><li>Modern management methods... </li></ul><ul><ul><li>... for comparing options... </li></ul></ul><ul><ul><ul><li>... are fine, when you can... </li></ul></ul></ul><ul><ul><ul><ul><li>... put a value on all the risks </li></ul></ul></ul></ul><ul><li>When you can’t... </li></ul><ul><ul><li>... NPV & DCF tend to favour (misleadingly)... </li></ul></ul><ul><ul><ul><li>... quick wins and short-termism </li></ul></ul></ul><ul><li>Didn’t 2008 teach us that... </li></ul><ul><ul><li>... the sheer scale of human systems... </li></ul></ul><ul><ul><ul><li>... is no guarantee against... </li></ul></ul></ul><ul><ul><ul><ul><li>... fundamental systemic failure </li></ul></ul></ul></ul><ul><li>How can you price an insurance premium... </li></ul><ul><ul><li>... against a 5 metre rise in sea-level ? </li></ul></ul><ul><ul><ul><li>... who do you buy it from ? </li></ul></ul></ul>
  76. 78. Chapter 5 what next
  77. 79. so, the Human Race... ... is at the cross-roads and we do not have much time to decide Thorium liquid-fuelled Uranium Solid-fuelled
  78. 80. <ul><li>Thorium / LFTR offers the way forward </li></ul><ul><ul><li>... in solving the problems of the energy-crunch </li></ul></ul><ul><ul><li>... in (contributing to) dealing with climate-change </li></ul></ul><ul><li>the approach is basically proven </li></ul><ul><ul><li>... they ran the Oak Ridge reactor for five years </li></ul></ul><ul><ul><li>... but for development, it requires investment </li></ul></ul><ul><li>the business/regulatory context prevents progress </li></ul><ul><ul><li>... only Uranium & Plutonium (solid-fuel) is allowed </li></ul></ul><ul><li>the traditional approach was aimed at weapons </li></ul><ul><ul><li>... with risk of explosions, and long term waste </li></ul></ul><ul><ul><li>... the problem now is all about power generation </li></ul></ul><ul><li>the only viable solution ... is a combination of </li></ul><ul><ul><li>... demand reduction, renewables, Thorium / LFTR </li></ul></ul>Conclusions U Th Th
  79. 81. <ul><li>Who to watch... </li></ul><ul><li>Germany is gambling on renewables </li></ul><ul><li>France is making an each-way bet ?? </li></ul><ul><li>US seems frozen, in the headlights... </li></ul><ul><ul><li>... of its own military-industrial complex </li></ul></ul><ul><ul><li>... but US scientist & engineers leading on Thorium </li></ul></ul><ul><li>China’s Thorium LFTR program... </li></ul><ul><ul><li>... might be the planet’s best news </li></ul></ul><ul><li>UK is due to close nuclear reactors... </li></ul><ul><ul><li>... almost as fast as Germany </li></ul></ul><ul><ul><li>... but we expect to replace them, x 3 </li></ul></ul><ul><ul><li>... but with what ... watch this space </li></ul></ul>U Th Th ??
  80. 82. Thorium is so energy-dense that you could hold your whole lifetime supply in the palm of your hand but only if we invest in LFTR technology U Th Th
  81. 83. <ul><li>Health Warning ... and acknowledgements </li></ul><ul><li>this is not an engineering paper </li></ul><ul><li>its author claims no expertise in nuclear engineering </li></ul><ul><ul><li>... but has worked in the nuclear industry </li></ul></ul><ul><ul><li>... and has a degree in physics - long ago </li></ul></ul><ul><ul><li>... Fukushima prompted him to catch up with Thorium </li></ul></ul><ul><li>if you wish to pursue any aspect of this topic ... </li></ul><ul><ul><li>... it’s all on the web, including wikipedia </li></ul></ul><ul><ul><li>... some search suggestions, which I leaned on, thanks </li></ul></ul><ul><ul><ul><li>energy from thorium </li></ul></ul></ul><ul><ul><ul><li>thorium energy alliance </li></ul></ul></ul><ul><ul><ul><li>Kirk Sorensen, Robert Hargraves </li></ul></ul></ul><ul><ul><ul><li>Alvin Weinberg, Dr David LeBlanc </li></ul></ul></ul><ul><ul><ul><li>MSRE, ORNL </li></ul></ul></ul><ul><li>the papers suggest that there are development obstacles... </li></ul><ul><ul><li>... but no showstoppers ... telescope to blind eye ? </li></ul></ul><ul><li>but for further info, please feel free to contact... </li></ul><ul><li>[email_address] </li></ul>
  82. 84. Uranium / Plutonium solid-fuel fuel - limited supply ......... fuel - poor efficiency ........ needs enrichment ............ dangerous reactors .......... no CHP or transmission savings stops to refuel .................. unspent fuel, partial burn long term waste, 240K years fission products, “ash” ....... no £ from fission products bulky waste, long & medium cannot make green H2 some proliferation risk cannot burn-off long waste Thorium liquid-fuel 4 x as much ore x 250 heat , x 320 elec doesn’t, 100% fuel safe, local can do both continuous operation none, complete burn none same, 300 years £, medical, hi-tech compact, medium only can, & NH4 > fertilizers reduced can, the only way ??
  83. 85. <ul><li>can something be... </li></ul><ul><ul><li>... too good to be true </li></ul></ul><ul><ul><li>... but still be true ?? </li></ul></ul>
  84. 86. <ul><li>There have been three ... </li></ul><ul><li>... strategic nuclear decisions </li></ul><ul><ul><li>to make bombs from Uranium </li></ul></ul><ul><ul><li>to power ships with Uranium </li></ul></ul><ul><ul><li>to make electricity from Uranium </li></ul></ul><ul><li>We are now facing the 4th decision... </li></ul><ul><ul><li>... how to make electricity </li></ul></ul><ul><ul><ul><ul><li>... to meet the carbon-challenge </li></ul></ul></ul></ul><ul><li>let’s get it right, this time </li></ul><ul><li>choose Thorium LFTR </li></ul>
  85. 87. thanks, Alvin but what about the children ? did they all live happily ever after ?
  86. 88. tune in next year to hear if the children manage to pick up the bullet and slay the carbon dragon
  87. 89. thank you for persevering to the end of something which still seems quite difficult to believe
  88. 91. Annex A Re-processing of waste fuel
  89. 92. Reprocessing ... Victor Gilinsky (NRC) Reprocessing and recycle: Why renewed interest? How would they relate to Yucca Mountain? presentation to the Nevada High Level Radioactive Waste Committee at the May 14, 2008 meeting Las Vegas   Three Mile Island
  90. 93. Reprocessing – purpose
  91. 94. Reprocessing – of (un)spent fuel
  92. 95. <ul><li>World commercial reprocessing... </li></ul><ul><li>• Commercial reprocessing and recycle, as carried out in France and Britain and now in Japan, with some subsequent recycle of plutonium, adds very little, at great expense, to the fuel supply ~20% </li></ul><ul><li>• We already use plutonium in reactors... </li></ul><ul><ul><li>... about 40% of power from US reactors comes from plutonium </li></ul></ul><ul><li>• Very difficult to recycle more than once... </li></ul><ul><ul><li>... because you build up contaminants that mess up the process </li></ul></ul><ul><li>• After one cycle you still have spent fuel to dispose of </li></ul><ul><li>• So there is little gain (say, 20%) in terms of repository space </li></ul>
  93. 96. <ul><li>Why do the French and others do it?... </li></ul><ul><li>• First their nuclear bureaucracies are more powerful and ideological </li></ul><ul><ul><li>... and believe in future plutonium use </li></ul></ul><ul><li>Reprocessing of foreign fuel was a moneymaker ... </li></ul><ul><ul><li>... just because something is not economic... </li></ul></ul><ul><ul><ul><ul><li>... doesn’t mean you can’t make money at it </li></ul></ul></ul></ul><ul><ul><li>... so long as someone foots the bill, as the Japanese did </li></ul></ul><ul><li>• Note the British don’t reprocess their own LWR fuel... </li></ul><ul><ul><li>... and will likely phase out reprocessing altogether </li></ul></ul><ul><ul><li>... and will be left with 100 tons of plutonium </li></ul></ul>THORP Thermal Oxide Reprocessing Plant
  94. 97. Yucca Mountain Repository <ul><li>funding for development of Yucca Mountain waste site was terminated... </li></ul><ul><ul><li>... 2011 federal budget - passed by Congress on April 14, 2011 </li></ul></ul><ul><li>leaves the US with no long term storage site for high level radioactive waste </li></ul><ul><li>currently stored on-site at various nuclear facilities around the country </li></ul>worldwide, the majority of waste is not reprocessed
  95. 98. Annex B Risk Comparisons pollution proliferation (weapons)
  96. 99. Risk .... Types and Phases <ul><li>Phases of Operation.... </li></ul><ul><li>pre-op ... fuel enrichment (eg centrifuges) </li></ul><ul><li>operational reactor </li></ul><ul><li>post-op ... waste management </li></ul><ul><li>Types of Risk.... </li></ul><ul><li>radiation release / pollution </li></ul><ul><li>proliferation (of weapons) </li></ul>
  97. 100. Risk of Radiation Release / Pollution Phase Uranium/Plutonium Solid Fuel (Rods) Pre-Op Fuel Enrichment (centrifuges) medium / low risk U-235 >> Weapons Grade Operational Reactor high risk high pressure, hydrogen --------------------------- Fission Products (Cs, Sr, I) medium-term pollution --------------------------- U-235, U-238, Pu-239 long-term pollution Post-Op Waste Management medium risk (but long time) Fission Products (Cs, Sr, I) medium-term pollution --------------------------- U-235, U-238, Pu-239 Un-Spent Fuel (long-term)
  98. 101. Risk of Radiation Release / Pollution Phase Uranium/Plutonium Solid Fuel (Rods) Thorium Liquid Fuel (LFTR) Pre-Op Fuel Enrichment (centrifuges) medium / low risk U-235 >> Weapons Grade no risk no Enrichment no Fissile Material Operational Reactor high risk high pressure, hydrogen --------------------------- Fission Products (Cs, Sr, I) medium-term pollution --------------------------- U-235, U-238, Pu-239 long-term pollution no risk no pressure or hydrogen ---------------------------- Fission Products (Cs, Sr, I) medium-term pollution --------------------------- U-233, U-232 long-term pollution Post-Op Waste Management medium risk (but long time) Fission Products (Cs, Sr, I) medium-term pollution --------------------------- U-235, U-238, Pu-239 Un-Spent Fuel (long-term) low risk Fission Products (Cs, Sr, I) medium-term pollution --------------------------- no Un-Spent Fuel
  99. 102. Risk of Proliferation (of weapons) * probably need to distinguish between “materials bandits” and rogue states (running reactors) Phase Uranium/Plutonium Solid Fuel (Rods) Pre-Op Fuel Enrichment (centrifuges) U-235 >> weapons grade nuke Operational Reactor * Fission Products (Cs, Sr, I) dirty bomb --------------------------- U-235, U-238, Pu-239 nuke Post-Op Waste Management Fission Products (Cs, Sr, I) dirty bomb --------------------------- U-235, U-238, Pu-239 Un-Spent fuel ... nuke
  100. 103. Risk of Proliferation (of weapons) * probably need to distinguish between “materials bandits” and rogue states (running reactors) ** need to read Kirk Sorensen’s “rebuttal” of IEER ‘fact sheet’ Phase Uranium/Plutonium Solid Fuel (Rods) Thorium Liquid Fuel (LFTR) Pre-Op Fuel Enrichment (centrifuges) U-235 >> weapons grade nuke no Enrichment no Fissile Material no risk Operational Reactor * Fission Products (Cs, Sr, I) dirty bomb --------------------------- U-235, U-238, Pu-239 nuke Fission Products (Cs, Sr, I) dirty bomb --------------------------- U-233, U-232 (gamma) no real risk..?? ** Post-Op Waste Management Fission Products (Cs, Sr, I) dirty bomb --------------------------- U-235, U-238, Pu-239 Un-Spent fuel ... nuke Fission Products (Cs, Sr, I) dirty bomb --------------------------- no Un-Spent fuel no nuke risk
  101. 104. Annex C Miscellaneous
  102. 105. nuclear story has many threads commerce industry military science research engineering weapons naval motors electricity ecology society politics history and they are all inter-woven
  103. 106. Generation IV... ... new nuclear reactor designs <ul><li>“ Thermal-neutron” reactors </li></ul><ul><ul><li>Very-high-temperature reactor (VHTR) </li></ul></ul><ul><ul><li>Supercritical-water-cooled reactor (SCWR) </li></ul></ul><ul><ul><li>Molten-salt reactor (MSR) - Thorium / LFTR </li></ul></ul><ul><li>“ Fast-neutron” reactors </li></ul><ul><ul><li>Gas-cooled fast reactor (GFR) </li></ul></ul><ul><ul><li>Sodium-cooled fast reactor (SFR) </li></ul></ul><ul><ul><li>Lead-cooled fast reactor (LFR) </li></ul></ul><ul><li>Energy amplifier (ADS) – accelerator + Thorium </li></ul><ul><li>otherwise, Uranium/Plutonium, solid-fuelled </li></ul>
  104. 107. Radioactive Decay... .... a Half-Life is how long it takes an isotope .... .... to decay down to half of its initial level time level Radioactive Decay Curve initial half half life <ul><li>eg - radioactive isotopes.... </li></ul><ul><ul><li>.... in 3 Half-Lives decay down to <13% </li></ul></ul><ul><ul><li>.... in 6 Half-Lives decay down to <2% </li></ul></ul><ul><ul><li>.... in10 Half-Lives decay down to less than a tenth of 1% </li></ul></ul>
  105. 108. Radioactivity.... .... distinguish between three timescales.... <ul><li>All radioactive isotopes.... </li></ul><ul><ul><li>.... in 3 Half-Lives decay down to <13% (of original) </li></ul></ul><ul><ul><li>.... in 6 Half-Lives decay down to <2% </li></ul></ul><ul><ul><li>.... in 10 Half-Lives decay down to less than a tenth of 1% </li></ul></ul>Type of Waste Product in 3 H-Ls in 6 H-Ls in 10 H-Ls Time short-term (fission products)... <13% <2% <0.1% Units .... Iodine-131, H-L = 8 days 24 48 80 days medium-term (fission products).... .... Caesium-137, H-L = 30 years 90 180 300 years .... Strontium-90, H-L = 29 years 87 174 290 years long-term (unspent fuel).... .... Uranium-235, H-L = 700 million years 2.1 4.2 7.0 bn-yrs .... Plutonium-239, H-L = 24,200 years 73 145 242 k-yrs
  106. 109. Carbon Footprints ... of common fuels <ul><li>Derive Thorium / LFTR footprint from Uranium (60), but... </li></ul><ul><ul><li>easier mining, no enrichment </li></ul></ul><ul><ul><li>no re-processing or long-term waste </li></ul></ul><ul><ul><li>simpler reactor, at atmospheric pressure </li></ul></ul><ul><ul><li>Thorium (fuel-efficiency) = Uranium x 320 </li></ul></ul><ul><ul><li>looks like ...“similar to Hydro-Electric”..?? </li></ul></ul>+ explosions not shale wikipedia Source Grams(CO2) / KW.Hr Coal 955 Oil 893 Natural Gas 599 Photo-Voltaics 106 Nuclear - Uranium 60 Wind 21 Hydro-Electric 15
  107. 110. | 161 including particulate pollution | disputed, eg post - Chernobyl | 171,000 at Banqiao Annual Deaths per TW.Hr <ul><li>Industrial Nuclear stats look good... </li></ul><ul><li>but disputed due to hidden, delayed deaths..?? </li></ul><ul><li>Thorium / LFTR should beat Uranium </li></ul><ul><li>many risks avoided, no explosions </li></ul>nextbigfuture
  108. 111. Uranium Thorium / LFTR, with all its savings, is predicted to be... ... so much cheaper than Uranium... ... that it would be cheaper than coal
  109. 112. <ul><li>LWR (BWR & PWR) </li></ul><ul><li>most common types </li></ul><ul><li>solid-fuel (rods) </li></ul><ul><li>need enriched Uranium </li></ul><ul><li>water as coolant </li></ul><ul><li>water as moderator </li></ul><ul><li>very high pressure, x 150 </li></ul><ul><li>need active cooling </li></ul><ul><li>only a partial-burn </li></ul><ul><li>so long-term radioactive waste (U, Pu), plus fission products </li></ul><ul><li>Fukushima, 6 x BWRs </li></ul><ul><li>Three Mile Island was a PWR </li></ul><ul><li>Chernobyl RBMK (Russian ‘BWR’)... </li></ul><ul><ul><li>... but graphite moderator, so unenriched Uranium </li></ul></ul>reactor steam turbine, electric generator cooling pump, condenser Author: Robert Steffens Boiling Water Reactor
  110. 113.   Author: European Nuclear Society <ul><li>His concern ... solid-fuel reactors can be unstable </li></ul><ul><li>Uranium &/or Plutonium </li></ul><ul><li>solid fuel-rods </li></ul><ul><li>U-235 needs enrichment (LWR) </li></ul><ul><li>Water used as coolant </li></ul><ul><li>heated to ~ 500C </li></ul><ul><li>also slows down neutrons </li></ul><ul><li>so sustains chain reaction </li></ul><ul><li>Very high pressures </li></ul><ul><li>150 x atmospheric pressure </li></ul><ul><li>strong container vessel </li></ul><ul><li>eg 20cm steel </li></ul><ul><li>plus massive concrete outer </li></ul><ul><li>Only “partial-burn” of fuel (~1%) </li></ul><ul><li>so U-235, Pu-239 in waste </li></ul><ul><li>Fuel rods damaged/replaced </li></ul><ul><li>eg after 1 or 2 years </li></ul><ul><li>scheduled closedowns </li></ul><ul><li>If reactors overheat ... </li></ul><ul><li>... water splits >> hydrogen </li></ul>
  111. 114. <ul><li>How good is Uranium.... </li></ul><ul><li>... as a nuclear fuel..?? </li></ul><ul><li>Good news... </li></ul><ul><li>U-235 is fissile – so provides its own neutron source </li></ul><ul><li>U-238 is fertile – so converts into fissile Pu-239 </li></ul><ul><li>Bad news... </li></ul><ul><li>U-235 is very low % (0.7%) ... so it needs enrichment </li></ul><ul><li>Uranium burns (1%) in a solid-fuel reactor... </li></ul><ul><ul><li>... so only an incomplete (partial) burn </li></ul></ul><ul><ul><li>... long-term waste, high-level, (99%) </li></ul></ul><ul><li>Question... </li></ul><ul><ul><li>is residual Pu-239 an asset (weapons) ...?? </li></ul></ul><ul><ul><li>... or a liability (proliferation, pollution) ...?? </li></ul></ul>
  112. 115. <ul><li>How good is Thorium.... </li></ul><ul><li>... as a nuclear fuel..?? </li></ul><ul><li>Bad news... </li></ul><ul><li>it needs a fissile trigger – to get the neutrons started </li></ul><ul><li>Good news... </li></ul><ul><li>once started, it is self-sustaining, in neutron flux </li></ul><ul><li>Th-232 is fertile – so converts into fissile U-233 </li></ul><ul><li>there is no need for enrichment - already 100% </li></ul><ul><li>Thorium can breed & burn in a liquid-fuel reactor... </li></ul><ul><ul><li>... so it can perform a complete (100%) burn </li></ul></ul><ul><li>no U-238 to breed into Pu-239 </li></ul><ul><li>four times more available than Uranium </li></ul>U Th Th
  113. 116. <ul><li>The US fuel supply for one year ... </li></ul><ul><ul><li>... which is about 20% of planet’s </li></ul></ul><ul><ul><ul><li>... would be about 1200 tonnes </li></ul></ul></ul><ul><ul><ul><ul><li>... of Thorium </li></ul></ul></ul></ul><ul><li>So, the 3,200 tonnes in Nevada ... </li></ul><ul><ul><li>... left over from the Manhattan Project... </li></ul></ul><ul><ul><ul><li>... would cover about 3 years US supply </li></ul></ul></ul><ul><li>If they converted all US supply to Thorium... </li></ul><ul><ul><li>... steadily, over (say) 40 years </li></ul></ul><ul><ul><ul><li>... then, the US would not need to mine </li></ul></ul></ul><ul><ul><ul><ul><li>... any new Thorium </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>... for about 12 years </li></ul></ul></ul></ul></ul>
  114. 117. <ul><li>After that, just to give... </li></ul><ul><ul><li>... only one example ... </li></ul></ul><ul><li>the Lemhi Pass... </li></ul><ul><ul><li>... on the Montana-Idaho border... </li></ul></ul><ul><ul><ul><li>... has ~ 1,800,000 tons... </li></ul></ul></ul><ul><ul><ul><ul><li>... of high-grade thorium ore </li></ul></ul></ul></ul><ul><li>That alone... </li></ul><ul><ul><li>... adds up to about ~ 1,000 years... </li></ul></ul><ul><ul><ul><li>... fuel supply... </li></ul></ul></ul><ul><ul><ul><ul><li>... for the whole USA </li></ul></ul></ul></ul>
  115. 118. rises in Sea-Level, from melting Ice-Sheets Greenland ... 7m West Antarctic ... 6m Antarctic ...61m
  116. 119. more evaporation more cloud more rain more wind more severe events Changes in the Weather growth of deserts forced migrations water supply problems agricultural changes impacts on food production
  117. 120. Ocean Currents North Atlantic Conveyor <ul><li>energy equivalent </li></ul><ul><ul><ul><li>... one million nuclear power stations </li></ul></ul></ul><ul><li>it warms northern Europe, by 5C to 10C </li></ul><ul><li>it’s being slowed (stopped ?) by climate-change </li></ul><ul><ul><ul><li>... maybe an ice-age for Europe ?? </li></ul></ul></ul>
  118. 121. Breed & Burn O + n = fertile, absorb a neutron (( O )) = fissile O - e = unstable, lose an electron (ie beta decay) atomic no > Th - 90 PA - 91 U - 92 Np - 93 Pu - 94 isotope 239 O - e > O - e > (( O )) 238 O + n ^ 237 236 235 (( O )) 234 233 O - e > O - e > (( O )) 232 O + n ^
  119. 122. first question is Uranium (solid-fuel)... ...the only type of nuclear reactor ? no there is also Thorium (liquid-fuel)
  120. 123. second question has the alternative been tried ? yes they ran a Thorium reactor (liquid-fuel) for five years
  121. 124. third question was the alternative successful ? yes it was much more efficient it was much safer it did not produce long-term waste
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×