0
Tecnologie Ink-Jet e MEMS in Olivetti Roberto Della Marina Technology Innovation Director Olivetti I-Jet SpA 10° Matching ...
MEMS Technologies & Ink Jet MEMS technology <ul><li>Printable  </li></ul><ul><li>Electronics </li></ul><ul><li>RF-Tags, TF...
Olivetti I-Jet  Ink-Jet / MEMS Value Chain  Wafers Manufact. Front End Back-End System Integration Equip. Manufact. <ul><l...
Ink-Jet Technology and Applications
Thermal Bubble Ink Jet Technology 1 FILTER FLAT   CABLE SEALING GLUE ACTUATOR GROUP PROTECTIVE GLUE LID INK “RETAINER” ADH...
Thermal Bubble Ink Jet Technology 2 SUBSTRATE PHOTOPOLYMER NOZZLE PLATE ACTUATOR GROUP DROPLET EJECTION PRINCIPLE RESISTOR...
<ul><li>Thermal Ink-Jet can only jet H 2 O based  fluids ? </li></ul><ul><li>Usable and tested Materials: </li></ul><ul><u...
Reagents & Materials <ul><li>Small Molecules </li></ul><ul><li>Acetone </li></ul><ul><li>Acetonitrile </li></ul><ul><li>Ad...
Ink-Jet Dispensing Advantages <ul><li>Additive  </li></ul><ul><li>Flexible </li></ul><ul><li>is  data-driven </li></ul><ul...
Printable Electronics
Markets & Applications <ul><li>Photovoltaics </li></ul><ul><li>Fuel Cells </li></ul><ul><li>Batteries </li></ul><ul><li>Fl...
PED Market and Forecasts Courtesy of IT Strategies
<ul><li>Fully additive = reduction in process complexity </li></ul><ul><li>Large reduction in Cost /unit area </li></ul><u...
Functional Material Printing Jigsaw Material Composition Development Substrate Structure & Surface condition Process devel...
Ink-Jet RF-ID Case <ul><li>To minimize costs applications will want to carefully evaluate conductivity requirements </li><...
<ul><li>Example cost comparison for a 5x7 cm RFID antenna </li></ul><ul><li>Other IJP Advantages: Can print in-line, custo...
RFID Inkjet  Production Example <ul><li>5 x 7cm 2  Tag = 285 units / m 2 </li></ul><ul><li>40m 2  / hr x 285 = 11K tags / ...
Technology exploitation <ul><li>The technology development is still in an early phase but is extremely promising </li></ul...
BioMedical Applications
Explicit Wishes in In Vitro Diagnostics  <ul><li>Effort to  simplify  and  accelerate  sample preparation (HPLC, PCR)  </l...
Micronanotechnology addresses all requirements <ul><li>Microtechnology enables  miniaturization  of key functional modules...
MicroNano-biotechnology activity in Olivetti <ul><li>Development of  non-contact dispensing  methods and  instruments </li...
Innovation all over the Supply Chain
Technology  exploitation <ul><li>The technology development is already in an advanced stage in some specific areas </li></...
MEMS Technology and Applications
 
 
Advantages of MEMS technology <ul><li>Size </li></ul><ul><li>Cost </li></ul><ul><li>Speed </li></ul><ul><li>Better perform...
Example: Pressure Sensors <ul><li>Pressure sensors w/o integrated  </li></ul><ul><li>electronics, Transducers </li></ul><u...
MEMS vs Ink-Jet comparison <ul><li>Same kind of requirements  </li></ul><ul><ul><li>Volumes, quality, cost, multidisciplin...
Foundry Services & CMO offer <ul><li>Availability to industrialize  2° stage  prototypes  and  post- ” proof of principle ...
Customer & Partner Value <ul><li>Large organization with solid core business:  Financial Stability  </li></ul><ul><li>Cont...
Grazie della Vostra attenzione. Roberto Della Marina Technology Innovation Director Olivetti I-Jet SpA [email_address] www...
Olivetti I-Jet Facts <ul><li>396 , 000 ft 2  total surface,  6 5, 000 ft 2  Clean Rooms     25 , 000 ft 2  of which “<Cla...
Upcoming SlideShare
Loading in...5
×

Smart Textiles

3,406

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
3,406
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
78
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Transcript of "Smart Textiles"

    1. 1. Tecnologie Ink-Jet e MEMS in Olivetti Roberto Della Marina Technology Innovation Director Olivetti I-Jet SpA 10° Matching Tecnologico Villa Olmo, 25 gennaio 2007
    2. 2. MEMS Technologies & Ink Jet MEMS technology <ul><li>Printable </li></ul><ul><li>Electronics </li></ul><ul><li>RF-Tags, TFTs </li></ul><ul><li>N ano materials </li></ul><ul><li>Organics/Inorganics </li></ul><ul><li>Bio Medical </li></ul><ul><li>Biochip/lab-on-chip </li></ul><ul><li>Diagnostics </li></ul><ul><li>Genomics/Proteomics </li></ul><ul><li>Sensori </li></ul><ul><li>Pressure Sensors </li></ul><ul><li>Foundry Services </li></ul><ul><li>Contract manufact. </li></ul>Thermal Ink-Jet
    3. 3. Olivetti I-Jet Ink-Jet / MEMS Value Chain Wafers Manufact. Front End Back-End System Integration Equip. Manufact. <ul><li>Device/Sensor Integration in FE Fab </li></ul><ul><li>Wafer Level Bonding </li></ul><ul><li>MEMS and ASICs (3 rd parties) packaging in a integrated sub-system </li></ul><ul><li> fluidics components interfaced/dispensing </li></ul><ul><li>Test & qualification </li></ul><ul><li>Manufacturing process in wafer-fab </li></ul><ul><li>Multi material Si, glass, polimers </li></ul><ul><li>System Integration </li></ul><ul><li>Lab equipment </li></ul><ul><li>Application specific developments </li></ul>OIJ MEMS Business Model
    4. 4. Ink-Jet Technology and Applications
    5. 5. Thermal Bubble Ink Jet Technology 1 FILTER FLAT CABLE SEALING GLUE ACTUATOR GROUP PROTECTIVE GLUE LID INK “RETAINER” ADHESIVE TRANSFER INK TANK Protective Layer Nozzle Plate Hydraulic circuit Ink Drop Silicon Substrate Vapour Bubble Thin Film Heater
    6. 6. Thermal Bubble Ink Jet Technology 2 SUBSTRATE PHOTOPOLYMER NOZZLE PLATE ACTUATOR GROUP DROPLET EJECTION PRINCIPLE RESISTOR NOZZLE DROPLET BUBBLE EXPLOSION BUBBLE COLLAPSE INK HEATER INK ENTRANCE SILICON HYDRAULIC CIRCUIT PHOTOPOLYMER ACTUATOR MICRO SECTION SiC Al SiO 2 Si Ta SiN TaAl
    7. 7. <ul><li>Thermal Ink-Jet can only jet H 2 O based fluids ? </li></ul><ul><li>Usable and tested Materials: </li></ul><ul><ul><ul><li>PEDOT, PANI (conductive polymers) </li></ul></ul></ul><ul><ul><ul><li>Silver, Gold nanoparticles </li></ul></ul></ul><ul><ul><ul><li>Ethanol, Methanol, IPA </li></ul></ul></ul><ul><ul><ul><li>OLED precursor solution </li></ul></ul></ul><ul><ul><ul><li>Toluene, Gasoline </li></ul></ul></ul><ul><ul><ul><li>Acetonitrile, Chloroform, HEMA </li></ul></ul></ul><ul><ul><ul><li>ZTO, ITO precursors, Cu precursors </li></ul></ul></ul><ul><ul><ul><li>1-part and 2-part UV curable epoxies </li></ul></ul></ul><ul><ul><ul><li>Small organic Molecules in H 2 O, DMSO </li></ul></ul></ul><ul><ul><ul><li>Antibodies and Nucleotides </li></ul></ul></ul><ul><ul><ul><li>Enzymes </li></ul></ul></ul>Thermal Ink-Jet Myth Thermal Ink-Jet can print anything that can nucleate 50  m drops ethilenglicole @ 2kHz Toluene drops
    8. 8. Reagents & Materials <ul><li>Small Molecules </li></ul><ul><li>Acetone </li></ul><ul><li>Acetonitrile </li></ul><ul><li>Adiponitrile </li></ul><ul><li>Butanol </li></ul><ul><li>Cyanoacrylate </li></ul><ul><li>DMF, Dimethylformamide </li></ul><ul><li>DMSO </li></ul><ul><li>Ethanol </li></ul><ul><li>Ethyl Acetate </li></ul><ul><li>Heptane </li></ul><ul><li>Isopropanol </li></ul><ul><li>Lithium Chloride to Saturated </li></ul><ul><li>Methanol </li></ul><ul><li>Potassium Carbonate 5M </li></ul><ul><li>Sodium Bicarbonate 100mM </li></ul><ul><li>Sodium Hydroxide, 80mM </li></ul><ul><li>Trifluroacetic acid 0.1% </li></ul><ul><li>Xylenes </li></ul><ul><li>Polymers </li></ul><ul><li>Acrylamide </li></ul><ul><li>alpha-cyano-4-hydroxycinnamic acid </li></ul><ul><li>Ethylene Glycol 5-30% </li></ul><ul><li>Glycerol to 50% </li></ul><ul><li>NMP, N-Methylpyrrolidone </li></ul><ul><li>Octylglucoside 1% </li></ul><ul><li>PEDOT </li></ul><ul><li>PEG 8000 0.1-30% </li></ul><ul><li>Polystyrene 8um in Buffer </li></ul><ul><li>Polyvinylpyrrolidone 0.25% </li></ul><ul><li>Propylene Carbonate </li></ul><ul><li>Propylene Glycol 0.1-30% </li></ul><ul><li>Tween 20 0.05-1.0% </li></ul><ul><li>Triton X 0.05-1.0% </li></ul><ul><li>Bio Macromolecules </li></ul><ul><li>IgG </li></ul><ul><ul><li>Anti-cytochorme C </li></ul></ul><ul><ul><li>Anti-goat FITC </li></ul></ul><ul><ul><li>Anti-rabbit Biotin </li></ul></ul><ul><li>Avidin </li></ul><ul><li>BSA 0.1% - 10%, 10 mM TRIS </li></ul><ul><li>Collagen (calf skin) 1mg/ml </li></ul><ul><li>Nucleotides </li></ul><ul><li>PLGA </li></ul><ul><li>Trypsin </li></ul><ul><li>Highly Complex BioFluids </li></ul><ul><li>Human Serum </li></ul><ul><li>Cells </li></ul><ul><li>Conductors, Semiconductors, Dielectrics </li></ul><ul><li>Pentacene, P3HT, ZTO, Ag, Au, Cu, TiO, ITO, ITZO, CdTe, ZnO, ZrO 2 </li></ul>
    9. 9. Ink-Jet Dispensing Advantages <ul><li>Additive </li></ul><ul><li>Flexible </li></ul><ul><li>is data-driven </li></ul><ul><li>requires no tooling </li></ul><ul><li>is non-contact </li></ul><ul><li>can offer safe multi-pass dispensing </li></ul><ul><li>uses liquid precursors </li></ul><ul><li>it is economical and environmentally friendly with minimal waste </li></ul>Non-contact microdispensing systems offer accurate and high-throughput deposition of active fluids for many new fields, like Printable TFTs, RFID or biological and life science applications.
    10. 10. Printable Electronics
    11. 11. Markets & Applications <ul><li>Photovoltaics </li></ul><ul><li>Fuel Cells </li></ul><ul><li>Batteries </li></ul><ul><li>Flex circuits </li></ul><ul><li>Smart Textiles </li></ul><ul><li>PCB Photomasks </li></ul><ul><li>Interconnects </li></ul><ul><li>Flat Panel Display </li></ul><ul><li>PLED </li></ul><ul><li>LCD </li></ul><ul><li>Color filters </li></ul><ul><li>Flexible displays </li></ul><ul><li>RF-ID </li></ul><ul><li>Antennas </li></ul><ul><li>PCB </li></ul><ul><li>SIP </li></ul><ul><li>Smart Packaging </li></ul>
    12. 12. PED Market and Forecasts Courtesy of IT Strategies
    13. 13. <ul><li>Fully additive = reduction in process complexity </li></ul><ul><li>Large reduction in Cost /unit area </li></ul><ul><ul><li>60% reduction of process steps </li></ul></ul><ul><ul><li>90% reduction in materials consumption </li></ul></ul>Pros and Contras <ul><li>Screen Print, Flexographic printing, Gravure printing or Offset printing can be more cost effective than Ink-Jet for PED </li></ul><ul><ul><li>Throughput => cost per unit area on productivity base (large volumes) </li></ul></ul><ul><ul><li>Simpler devices in high volumes </li></ul></ul>Ink-Jet is unbeatable for fast prototyping, small-medium volumes, high res, multi-materials, on-demand devices & processes <ul><ul><li>Depending on assumptions on Capex, process throughput and material cost, PED can be 2-3 order of magnitude cheaper than conventional subtractive process </li></ul></ul>
    14. 14. Functional Material Printing Jigsaw Material Composition Development Substrate Structure & Surface condition Process development and optimization Deposition Technology
    15. 15. Ink-Jet RF-ID Case <ul><li>To minimize costs applications will want to carefully evaluate conductivity requirements </li></ul>Complexity
    16. 16. <ul><li>Example cost comparison for a 5x7 cm RFID antenna </li></ul><ul><li>Other IJP Advantages: Can print in-line, customization at near zero added cost </li></ul>RF-ID Cost example
    17. 17. RFID Inkjet Production Example <ul><li>5 x 7cm 2 Tag = 285 units / m 2 </li></ul><ul><li>40m 2 / hr x 285 = 11K tags / h </li></ul><ul><li>440,000 tags per 40h week </li></ul><ul><li>22M tags / year </li></ul><ul><ul><li>one inkjet system only… </li></ul></ul><ul><ul><li>unlimited customization… </li></ul></ul><ul><ul><li>~Zero materials waste… </li></ul></ul><ul><li>Digital printing requires no set up or tooling </li></ul><ul><li>Digital “JIT” also avoids printing of “extras” and inventory </li></ul><ul><li>No scrap silver compared to flexo or gravure printing. </li></ul><ul><li>Industrial IJ Graphics systems need to be modified for IJ electronics </li></ul>
    18. 18. Technology exploitation <ul><li>The technology development is still in an early phase but is extremely promising </li></ul><ul><ul><li>Search for partners for technology development and assessment </li></ul></ul><ul><ul><ul><li>Materials, Automation, Robotics, SW… </li></ul></ul></ul><ul><ul><li>Search for Supply Chain partners </li></ul></ul><ul><ul><li>Search for partners for Application & Product development </li></ul></ul><ul><ul><ul><li>PCBs, wearable electronics, industrial control & applications, etc.. </li></ul></ul></ul>
    19. 19. BioMedical Applications
    20. 20. Explicit Wishes in In Vitro Diagnostics <ul><li>Effort to simplify and accelerate sample preparation (HPLC, PCR) </li></ul><ul><li>Immediately available in potentially severe medical situations, e. g. emergency room, ICU and ambulatory settings </li></ul><ul><li>Multiple analysis (diagnostics, water monitoring...) </li></ul><ul><li>Increase reliability / reproducibility of results </li></ul><ul><li>PoC or decentralized testing requires at least same cost and performance w.r.t. state of the art technology and in addition: </li></ul><ul><ul><li>Ease of use </li></ul></ul><ul><ul><li>Smaller and less expensive instrumentation </li></ul></ul><ul><ul><li>Time to result < 15 min </li></ul></ul><ul><ul><li>Low Cost of consumables </li></ul></ul>
    21. 21. Micronanotechnology addresses all requirements <ul><li>Microtechnology enables miniaturization of key functional modules </li></ul>and enables functional integration of complex IVD devices microsampling microdetection microfluidics microfabrication © RIC © STm
    22. 22. MicroNano-biotechnology activity in Olivetti <ul><li>Development of non-contact dispensing methods and instruments </li></ul><ul><ul><li>Micro to sub-pico liter dispensing </li></ul></ul><ul><li>Functionalization of surfaces and nanostructures </li></ul><ul><ul><li>Control of interaction of metal/polymer surfaces with liquids </li></ul></ul><ul><ul><li>Self-assembly monolayers (SAMs) </li></ul></ul><ul><li>Micro-Nano Cantilever based chip </li></ul><ul><ul><li>Ultrahigh precision sensing in physical measurements (pressure) and label-free biological measurements (proteomics, genomics) </li></ul></ul><ul><li>DNA-chip and lab-on-chip plattform development for early cancer diagnosys and screening. </li></ul><ul><ul><li>Biomarkers </li></ul></ul><ul><ul><li>LATEMAR project </li></ul></ul>
    23. 23. Innovation all over the Supply Chain
    24. 24. Technology exploitation <ul><li>The technology development is already in an advanced stage in some specific areas </li></ul><ul><ul><li>Search for partners for technology development and assessment </li></ul></ul><ul><ul><ul><li>Materials, Automation, Robotics, SW… </li></ul></ul></ul><ul><ul><li>Search for partners for application development </li></ul></ul><ul><ul><ul><li>Diagnostic kits, mixing & electrophoresys chip, DNA chip, spotting of biomaterials </li></ul></ul></ul><ul><ul><li>Search for Supply Chain partners </li></ul></ul>
    25. 25. MEMS Technology and Applications
    26. 28. Advantages of MEMS technology <ul><li>Size </li></ul><ul><li>Cost </li></ul><ul><li>Speed </li></ul><ul><li>Better performances </li></ul><ul><li>Enables new applications </li></ul><ul><ul><li>Biochips </li></ul></ul><ul><ul><li>RF-MEMS </li></ul></ul><ul><ul><li>Optical Switch </li></ul></ul><ul><ul><li>Tunable Laser </li></ul></ul>
    27. 29. Example: Pressure Sensors <ul><li>Pressure sensors w/o integrated </li></ul><ul><li>electronics, Transducers </li></ul><ul><li>Absolute, diffential, gauge </li></ul><ul><ul><li>Range: 0,5-50 Bar </li></ul></ul><ul><li>T° compensated </li></ul><ul><li>Calibrated, <1% precision STD </li></ul><ul><li>Analog or digital output </li></ul><ul><li>Custom electronics available </li></ul><ul><li>OEM applications </li></ul>
    28. 30. MEMS vs Ink-Jet comparison <ul><li>Same kind of requirements </li></ul><ul><ul><li>Volumes, quality, cost, multidisciplinary </li></ul></ul><ul><li>Business Model very similar </li></ul><ul><ul><li>Extend support/service beyond components </li></ul></ul><ul><ul><li>Innovation and Support all over the supply chain </li></ul></ul><ul><ul><li>High margins </li></ul></ul><ul><li>But: </li></ul><ul><li>OEM/ODM model NOT Captive </li></ul><ul><li>Outsourced Channel & Go-to-Market </li></ul>
    29. 31. Foundry Services & CMO offer <ul><li>Availability to industrialize 2° stage prototypes and post- ” proof of principle ” product concepts </li></ul><ul><li>After customer qualification ready to launch volume manufacturing of v ertically integrated products , timely managed through a sound Quality System with rigorous cost estimation and control </li></ul><ul><li>Process capabilities upon request </li></ul>
    30. 32. Customer & Partner Value <ul><li>Large organization with solid core business: Financial Stability </li></ul><ul><li>Contract Manufacturing or Pure Foundry Services available: Flexible Offer </li></ul><ul><li>Large Experience in Vertical Integration of Volume MEMS products </li></ul><ul><li>Industrial Whole Service experience </li></ul><ul><li>Group Synergies and Distributed Know-How </li></ul><ul><li>Low Cost, Short Lead Time </li></ul>
    31. 33. Grazie della Vostra attenzione. Roberto Della Marina Technology Innovation Director Olivetti I-Jet SpA [email_address] www.olivettimems.com
    32. 34. Olivetti I-Jet Facts <ul><li>396 , 000 ft 2 total surface, 6 5, 000 ft 2 Clean Rooms  25 , 000 ft 2 of which “<Class 100” in Arnad (AO)-Italy </li></ul><ul><li>Pilot Lines for FE and BE separated from Operations </li></ul><ul><li>24 Hours/ 5 Days a week </li></ul><ul><li>MEMS Installed capacity equivalent to 140’000 wafers/y (4 PH levels) on 6” wafers </li></ul><ul><li>2005 Net Revenues : 64 M€ </li></ul><ul><li>400 people, 110 R&D engineers </li></ul><ul><li>145 M€ CAPEX since 1995 </li></ul>SAP.R3 logistic system ISO 900 1v2000 and ISO 14000 certification
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×