Rfid Technology

2,734 views
2,625 views

Published on

Published in: Business, News & Politics
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,734
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
233
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Rfid Technology

    1. 1. RFID Technology An Introduction
    2. 2. Outline <ul><li>What is RFID </li></ul><ul><li>RFID timeline </li></ul><ul><li>The RFID system </li></ul><ul><li>Technical issues </li></ul><ul><li>Benefits and tradeoffs </li></ul><ul><li>Some Applications </li></ul>
    3. 3. What is RFID? <ul><li>R adio F requency Id entification </li></ul><ul><ul><li>Use of radio frequency (air interface) for automatic identification in proximity </li></ul></ul><ul><li>An identification technology </li></ul><ul><ul><li>Bar coding </li></ul></ul><ul><ul><li>Magnetic stripe </li></ul></ul><ul><li>Old technology </li></ul><ul><ul><li>new innovations </li></ul></ul><ul><ul><li>new applications </li></ul></ul>A UHF Reader 902-928 MHz Tags
    4. 4. Timeline <ul><li>1940s – Radar refined and used, RFID invented in 1948 </li></ul><ul><li>1950s – Early exploration of RFID </li></ul><ul><li>1960s – Development of the theory of RFID, field trials </li></ul><ul><li>1970s – Explosion of RFID development and early adoption </li></ul><ul><li>1980s – Commercial applications enter mainstream </li></ul><ul><li>1990s – Emergence of standards, RFID widely deployed </li></ul><ul><li>2000s – Over 350 direct reference patents, vast number of suppliers </li></ul>SOURCE: Landt, Jeremy. Shrouds of time, AIM 2001
    5. 5. The RFID system <ul><li>Main Components </li></ul><ul><ul><li>A reader (interrogator) with an antenna and an external interface (e.g., to a computer) </li></ul></ul><ul><ul><li>A transponder (tag) with a chip and an antenna </li></ul></ul>(also called as an Interrogator) A chip Antenna A Tag A Reader A Computer External Interface Reader’s Antenna
    6. 6. How does it works? <ul><li>Reader gets and executes commands from the back-end system </li></ul><ul><li>Reader emits radio frequency (RF) waves via its antenna </li></ul><ul><li>Waves travel through air and “energize” a passive transponder </li></ul><ul><li>Tag responds and transmits data signal via its antenna </li></ul><ul><li>Reader captures the tag data signal </li></ul><ul><li>Reader processes data signal </li></ul><ul><li>Reader delivers the processed information to the back-end system </li></ul>
    7. 7. RFID tags <ul><li>2 common types: </li></ul>Relatively small Relatively large in size Relatively cheap Relatively expensive Small memory size Large memory size Range up to a few meters Range up to hundred meters Powered by reader Powered by battery Passive Active
    8. 8. RFID tags [cont’] <ul><li>Made up of three parts </li></ul><ul><ul><li>Chip with memory that holds the intended information </li></ul></ul><ul><ul><li>Antenna, which is used to transmit information or in passive tags, to harvest power </li></ul></ul><ul><ul><li>Packaging, which encases the chip and the antenna </li></ul></ul><ul><li>Memory configuration </li></ul><ul><ul><li>Read-only (RO) </li></ul></ul><ul><ul><li>Write-once-read-many (WORM) </li></ul></ul><ul><ul><li>Read-write (R/W) </li></ul></ul>The IC chip The tag inlay The tag antenna A RFID paper label
    9. 9. RFID Tags Construction Bottom Layer (Adhesive) Inlet (RFID Tag) Spacer (Protective Layer) Top Overlay (printed layer)
    10. 10. RFID UHF Tags ALL-9238 tag &quot;SquiggleT&quot; antenna design; Approximate Size: 95mm x 10mm ; Small UHF form factor ALL-9250 tag ” I2” antenna design; Approximate Size: 134mm x 13mm; h igh gain in a controlled orientation ALL-9254 tag &quot;M&quot; antenna design Approximate Size: 95mm x 30mm Very high gain source: www.alientechnology.com/
    11. 11. EPC RFID Classes <ul><li>Class 0 Tags – Read Only E.g Matric </li></ul><ul><li>Class 1 Tags – WORM E.g Alien </li></ul><ul><li>Class 0+ - Read/Write E.g Matrics, Impinj </li></ul><ul><li>Class 2 – Read/Write </li></ul><ul><li>Class 3 – Semi active, with sensors E.g Alien, Powerpaper(EM) </li></ul><ul><li>Class 4 – Active Tag </li></ul>
    12. 12. RFID tags [con’t] <ul><li>Size of the silicon chip is small </li></ul><ul><li>Size and design of the antenna depend on the required performance </li></ul>SOURCE: Alien Technology SOURCE: Matrics Technology For glass bottle* For generic cartoon* (high performance) For wood pallet* For generic cartoon*
    13. 13. RFID System Frequencies <ul><li>Frequency bands used </li></ul><ul><ul><li><135KHz (low frequency, LF ) </li></ul></ul><ul><ul><li>13.56MHz (high frequency, HF ) </li></ul></ul><ul><ul><li>868MHz to 915MHz (Ultra-high frequency, UHF ) </li></ul></ul><ul><ul><li>2.45GHz, 5.8GHz (microwave) </li></ul></ul>
    14. 14. Low Frequency (LF) (135 KHz) <ul><li>Use inductive coupling </li></ul><ul><li>Typically passive, read-only, or read-write transponders </li></ul><ul><li>Requires a longer, more expensive antenna </li></ul><ul><li>Has shorter read ranges and typically larger transponder sizes than higher frequency ones </li></ul><ul><li>The least susceptible to performance degradations from metals and liquid </li></ul>
    15. 15. High Frequency (HF) (13.56 MHz) <ul><li>Use inductive coupling </li></ul><ul><li>Typically passive, read-only, read-write, or WORM (write once, read many) transponders </li></ul><ul><li>Less expensive and smaller than LF transponders </li></ul><ul><li>Lower data rates when compared with higher frequency ones </li></ul><ul><li>Commonly used in contact-less smart cards </li></ul><ul><li>Good penetration through non-conductive materials and nonconductive liquids </li></ul>
    16. 16. Ultra-High Frequency (UHF) (868 MHz and 915 MHz) <ul><li>Use far field coupling </li></ul><ul><li>Active and passive, read-only, read-write, or WORM transponders </li></ul><ul><li>Longer read range (up to 5 meters), higher data transfer rate </li></ul><ul><li>Less expensive than LF and HF transponders </li></ul><ul><li>Good penetration through non-conductive materials and non-conductive liquids </li></ul><ul><li>Provides a good balance between range and performance, especially for multiple transponder reading </li></ul>
    17. 17. Microwave (2.45 GHz, 5.8 GHz) <ul><li>Use far field coupling </li></ul><ul><li>Active and passive, read-only, read-write, or WORM transponders </li></ul><ul><li>Similar characteristics to UHF transponders, but with faster read rates </li></ul><ul><li>Cost is often twice as much or more than lower frequencies </li></ul><ul><li>Microwave heating on water </li></ul><ul><li>Reflected by metals and other conductive surfaces; offers the most directional signal </li></ul><ul><li>Frequency used by other applications, e.g. WiFi, microwave oven </li></ul>
    18. 18. * Operating range depends on reader power and operating environment Fastest read rates Most expensive <ul><li>Airline baggage </li></ul><ul><li>Electronic toll collection </li></ul><1m Microwave 2.4GHZ Does not work with items of high water or metal content EPC standard built around this frequency <ul><li>Pallet tracking </li></ul><ul><li>Carton tracking </li></ul><ul><li>Parking lot access </li></ul><4m UHF, 860MHZ to 930MHz Higher read rate than LF Low cost <ul><li>Smart cards </li></ul><ul><li>Library books </li></ul><ul><li>Airline baggage </li></ul><1m HF, 13.56MHz <ul><li>Short read range </li></ul><ul><li>Slower read rate </li></ul>Works well around water and metal <ul><li>Access control </li></ul><ul><li>Animal tracking </li></ul><ul><li>Product authentication </li></ul>< 0.5m LF, < 135MHz Drawbacks Benefits Applications Operating range* Frequency band
    19. 19. RFID Frequency Comparison Short range ! Regulation Interference problems Smallest tag High data rate 2.45 GHz Poor metal tolerance Poor water tolerance Non mature market Best operating range Choose for EPC solution Cost target the “ only” long range choice UHF 869-930 MHz Problems such as detuning Poor metal tolerance Standards: 14443 15693 18000... Long range is out of ISO Proven technology Reasonable tag size Many suppliers Cost 13.56 MHz Slow data transfer Large tag for 1m+ Cost and packaging Proven technology No Regulation problems. Metal and water tolerant. Animal traceability >135 KHz Drawbacks Advantages Frequency
    20. 21. Benefits of RFID <ul><li>Technical Features: </li></ul><ul><li>No line of sight, from a distance, of varying orientation </li></ul><ul><li>Read and write capabilities – change data at any time and data capacity is higher </li></ul><ul><li>Reusable </li></ul><ul><li>Multiple tags can be read in fast succession </li></ul><ul><li>Embeddable into any non-metallic product – opaque is ok </li></ul>
    21. 22. Benefits of RFID <ul><li>Business Perspective: </li></ul><ul><li>Reduction of direct labor – data capturing without human interaction </li></ul><ul><li>Protection of assets; brand protection – authentication </li></ul><ul><li>Single identifiable track-and-trace in real-time </li></ul><ul><li>Inventory costs savings </li></ul><ul><li>Follow the leaders: </li></ul><ul><li>Mandate (e.g Wal-Mart, DOD, Tesco, Metro) </li></ul>
    22. 23. Drawbacks of using RFID <ul><li>Unregulated: Operates in the ISM 1 (industrial, scientific and medical) band that requires no operator’s license. </li></ul><ul><li>Security: Tag signals can be read by any equipment within range </li></ul><ul><li>Interference: occurs when more than one reader is transmitting (partitioning is then required) </li></ul><ul><li>Interference: occurs when more than one tag is responding (anti-collision mechanism is needed) </li></ul><ul><li>Privacy: track and trace capability </li></ul>1. http://www.itu.int/ITU-R/terrestrial/pub-reg/faq/index.html#g013
    23. 24. Factors that affect operating distance <ul><li>The radio frequency used </li></ul><ul><li>Power emitted by the reader </li></ul><ul><li>The working environment </li></ul><ul><li>Sources of radio interference </li></ul>
    24. 25. RFID Constraints Metal Interference Metal heavily influences LF and HF systems . The reflected induction field reduces the transmitting field’s power. Near the surface, there is no signal at all. Also, with HF Systems the antenna will run out of tune due to metal influence. UHF waves can't penetrate metal and will be reflected as well, but the interferences can be mastered. Active and semi-active systems are not affected. Source: Sato Metal B-Field ~
    25. 26. RFID Constraints Water Interference Water has only a small influence on LF and HF systems, but a heavy influence on UHF systems . The RF-wave makes the water’s molecular structure oscillate. This creates heat energy. The microwave! Source: Sato H 2 O
    26. 27. RFID System Considerations <ul><li>Determine the required read distance </li></ul><ul><li>Select a suitable tag antenna design for the specific application </li></ul><ul><li>Select a suitable system frequency </li></ul><ul><li>Follow standards and government regulations </li></ul><ul><li>For multiple tag reading in same field, select a suitable reader with anti-collision </li></ul><ul><li>Select a suitable reader antenna arrangement for orientation sensitive applications </li></ul><ul><li>A hardware setup can be affected by the working environment </li></ul>
    27. 28. Source: SATO RFID – why not now? Varying standards – incompatibility; costs; cross-border
    28. 29. US, Canada 125KHz 13.56MHz 902-928MHz EU Countries 125KHz 13.56MHz 868-870MHz Japan 125KHz 13.56MHz 950-956MHz Different UHF ISM bands – cross-border issue
    29. 30. Applications <ul><li>Inventory control </li></ul><ul><li>Theft prevention (EAS) </li></ul><ul><li>Track and trace of products (in food and pharmaceutical industries) </li></ul><ul><li>Express checkout </li></ul><ul><li>Smart cards </li></ul><ul><li>People tracking (RFID tag implant) </li></ul>
    30. 31. RFID Applications <ul><li>Tracking animals/fish </li></ul><ul><ul><li>RFID ear tags for cattle. </li></ul></ul><ul><ul><li>RFID under-skin smart tags are being used for horses or pets. </li></ul></ul><ul><ul><li>In Singapore, SANC pioneered the application of RFID tags incorporating EAN-128 system to identify the endangered Arowana Fish. </li></ul></ul>Source: Sato
    31. 32. 現 行價值鏈的機制 工程管理 物流管理 庫 存 管理 防止 遺 失 / 失竊 驗貨 / 盤點 再使用 ( Reuse)/ 回收再生 ( Recycle) 工 廠 倉庫 零售店 家庭(消費者) 產 品 資訊 管理 個別 ERP 系統 個別 ERP 系統 個別 ERP 系統 商品管理 個別 ERP 系統 ・ standalone systems of each partner – reactiveness is limited
    32. 33. RFID Application
    33. 34. Other Possible Implementations <ul><li>Sewing RFID tags directly into fabric fibers in the clothing industry </li></ul><ul><li>Protecting sensitive documents (US passports will have RFID tags from 2005 onwards) </li></ul><ul><li>Counterfeit control 1 </li></ul><ul><li>Baggage trackers 2 </li></ul><ul><li>www.informationweek.com/story/showArticle.jhtml?articleID=18311407 </li></ul><ul><li>www.usatoday.com/travel/news/2004-04-19-high-tech-bag-tracking_x.htm </li></ul>
    34. 35. Other Possible Implementations
    35. 36. EPC Global <ul><li>“ EPCglobal is leading the development of industry-driven standards for the Electronic Product Code™ (EPC) to support the use of Radio Frequency Identification (RFID) in today’s fast-moving, information rich trading networks. We are a member-driven organisation comprised of leading firms and industries focused on creating global standards for the EPCglobal Network™.” </li></ul><ul><li>EPC Standards </li></ul><ul><li>EPCglobal Network </li></ul>http://www.epcglobalinc.org See the “Video: The Basics of RFID and EPC”
    36. 37. EPC Tag Data Standards Specific encoding schemes for a serialized version of the EAN.UCC Global Trade Item Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset Identifier (GRAI®), the EAN.UCC Global Individual Asset Identifier (GIAI®), and a General Identifier (GID). UHF Class 0 Specifications Communications interface and protocol for 900 MHz Class 0 UHF Class 1 Specifications Communications interface and protocol for 860 - 930 MHz Class 1 HF Class 1 Specifications Communications interface and protocol for 13.56 MHz Class 1 Reader Protocol Communications messaging and protocol between tag readers and EPC compliant software applications Savant Specification Specifications for services Savant performs for application requests within the EPCglobal Network Object Name Service Specification Specifications for how the ONS is used to retrieve information associated with a Electronic Product Code (EPC) Physical Markup Language Core Specification Specifications for a common vocabulary set to be used within the EPC global Network to provide a standardized format for data captured by readers EPC Global Specifications
    37. 38. EPC (Electronic Product Code) 96-bits e.g., Manufacturer 28 bits (>268 million) e.g., Product 24 bits (> 16 million) e.g., Serial Number 36 bits (> 68 billion )
    38. 39. Conclusion <ul><li>RFID can be used for a wide range of applications </li></ul><ul><li>RFID is one of many established information technologies that are making life safer & easier </li></ul><ul><li>Consumers benefit from better services, based on their behavior, desires and needs </li></ul><ul><li>Standardization will drive the adoption rate in the near future </li></ul><ul><li>Wider adoption will be expected if issues like tag price, consumer privacy are solved </li></ul>
    39. 40. XYZ An International Apparel Corporation Tradelink Regulatory Agents SML Group RFID-Label Provider AAT/Hactl CX Cargo LSP - air Consumers LSP - road LSP-VMI - Kerry Parties in RFID-Driven Business Chains Local Retails Local Retails International Retails Regional Retails
    40. 42. Notifying Tag Information

    ×