Microscopes And Sample Preparation Equipment For Analyses Of Textiles
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,115
On Slideshare
1,115
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
14
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Scientific Tools for Probing the Past Sven Isaksson Archaeological Research Laboratory Department of Archaeology and Classical Studies Stockholm University
  • 2.
    • Archaeology and Chemistry
    • Why a little chemistry is useful to archaeologists:
    • The archaeological sources are material remains – chemistry is the study of matter and its change
    • Material remains are affected by the ravages of time – what is left and how it is preserved
    • Man has always made use of matter and changed it; Man – the Chemist
  • 3. History C. 1800, first chemical analyses 1896, first physical analyses 1945  New techniques in chemistry, physics and biology 1949, 14 C-dating 1970  Increased application in archaeology 1985  Break-through in organic analyses
  • 4. Established in 1976 Professorship in 1986, first as an adjoining position but later as a regular chair, in laboratory archaeology (swe: laborativ arkeologi) Since 2005 part of the newly created Department of Archaeology and Classical Studies Archaeological Research Laboratory
  • 5. Department of Archaeology and Classical Studies Archaeology Osteoarchaeological Research Laboratory Classical Studies Numismatic Research Group Archaeological Research Laboratory
  • 6. Scientific tools are used to probe the archaeological material for more data Archaeology! Not Archaeology? Not science? Science!
  • 7. The Fate of Finds
    • Excavation
    • Semi-stable equilibriums are broken, collection, registration
    • Recording
    • Cleaning, visual characterization
    • Conservation
    • Halt decomposition, extract information
    • -excavation on microscopic level
    • Storage
    • Keep, preserve, display
    • Scientific analyses?
    • Excavations on molecular or atomic level
  • 8. The nature of archaeological material
  • 9. Contamination during excavation Hawaiian Tropic (coconut oil, UV-block).
  • 10. Contamination during recording Day Cream (palm-tree oil etc)
  • 11. Contamination during conservation Paraffin From Aveling 1998
  • 12. Keeping in museums Excavated aDNA mtDNA HTG10 HTG8 Late 1800-tal + - - Late 1900-tal + + + From Götherström 2001 Ancient horse DNA from Birka Alkanoic acids in Norwegian organic residues Is organic residues better off in the ground than in the museum?!
  • 13. Analytical techniques Prospecting Dating Characterization
  • 14. Prospecting Site locating
  • 15. Prospecting Site locating Site investigating
  • 16. Prospecting Site locating Site investigating Detecting anomalies from natural background
  • 17. Prospecting Site locating Site investigating Detecting anomalies from natural background Geochemical – e.g. phosphate Geophysical – e.g. slingram, magnetometer and ground penetrating radar
  • 18. Nutida kyrkan Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 19. Nutida kyrkan med tolkningen av katedralens utsträckning Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 20. Undersökningsytorna Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 21. Reflexer på 0 -0,6 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 22. Reflexer på 0,2-0,8 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 23. Reflexer på 0,5-1,1 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 24. Reflexer på 0,7-1,3 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 25. Reflexer på 1,0-1,6 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 26. Reflexer på 1,2-1,8 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 27. Reflexer på 1,4-2,1 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 28. Reflexer på 1,7-2,3 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 29. Reflexer på 1,9-2,5 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 30. Reflexer på 2,1-2,8 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 31. Reflexer på 2,4-3,0 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 32. Reflexer på 2,6-3,2 m djup Modellering efter georadar-prospektering Gamla Uppsala kyrka
  • 33. Dating To fix an event along a time axis
  • 34. Dating To fix an event along a time axis But what event?
  • 35. Dating To fix an event along a time axis But what event? The event dated by an analytical technique is not always the same as the archaeological event…
  • 36. Dating
  • 37. Dating Method Material Range (yrs) Sample size Chronological Find combination artefacts 10 6 - Dendrochronology wood 10 4 100 treerings Magnetic TRM burnt clay 10 4 , or longer cm DRM sediment Radiation damage Fission tracks glass, mineral 10 2 …10 7 mm TL ceramic, br. stone 10 2 …10 5 mg…g OSL sediment 10 6 mg…g ESR enamel 10 3 …10 6 mg…g Radioactive decay Conventional 14 C organic 50 000 10 g Accelerator 14 C organic 70 000 mg K/Ar mineral 10 5 …10 9 g Physical phenomenon Hydration obsidian, glass mm Chemical reactions Racemisation bone, hair 10 2 …10 6 g Biological growth Lichenometry lichens
  • 38. Characterization Provenance Biological origin Technology Man Living conditions and Climate
  • 39. Provenance Heterogeneity of the Earths crust Materials collected from a certain deposit may have a specific composition Mineral (stone, clay), metal, slag, glass
  • 40. Provenance Flint Provenance of 70 % of flint axes identified by trace elements alone Together with archaeological data, e.g. context and date, 95 % identified
  • 41. Provenance Garnets
  • 42. Biological origin Stigmasterol Cholesterol Squalene
  • 43. Biological origin Chemical analyses of: Fats/Oils Waxes Pitches Tars Leather Textile Food Morphological analyses: Seeds Leather Fur Textile Bone Short-chain fatty acids Long-chain fatty acids and MAG Long-chain ketones and DAG Sterols Triacylglycerols (TAG) IR-spectra of organic residues Gas chromatogram of lipid residues Scanning Electron Micrographs of cells from barley and pea in prehistoric food residue
  • 44. Technology Deposit or Inlay?
  • 45. Technology Deposit or Inlay?
  • 46. (Stjerna 1997) Technology Just because its green doesn't mean its bronze
  • 47. Technology Symbols or Cymbals: the Fröslunda shields From a sulfide ore - late Bronze Age Hammered and annealed – not suitable as cymbals Flattening of slag inclusions – hammered from a piece 15 cm in diameter
  • 48. Man Diet C- and N-isotopes, trace elements Breast-feeding N-isotopes Sex determination Osteology, aDNA Kinship aDNA Migration aDNA, S- and O- isotopes, trace elements
  • 49. Living conditions and climate Disease Osteology, aDNA Climate O-isotopes Vegetation, regional Pollen analysis Vegetation, local Plant macro fossils, organic geochemistry
  • 50.
    • aDNA laboratory for extraction and PCR, post-PCR laboratory in separate building
    • Atomic Absorption Spectrophoto-meter for trace metal element analyses of soil, bone and artefacts
    • Field-archaeology equipment , incl. sampling probes, field spectrophotometer, metal detector, GPS, total station, photo-tower for analogue or digital cameras
    • Fourier Transform Infrared Spectrometry for analyses of organic residues and pigments
    Facilities
    • Freezer-room for the storage of very large samples, e.g. whole graves
    • Gas Chromatography and Mass Spectrometry for organic residue analyses
    • GIS computer systems for spatial analyses
    • Mass Spectrometry for isotope (C, N, S, O) analyses primarily of bone collagen
    • Microscopes and sample preparation equipment for analyses of archaeo-botanical materials, textiles, etc
  • 51.
    • Slingram , Ground-Penetrating Radar and Magnetometer for archaeological prospecting
    • Spectrophotometers for wet-chemical analyses (e.g. phosphates)
    • Variable Pressure Scanning Electron Microscope with Energy Dispersive X-ray Spectrometry for microstructure and elemental analyses
    • X-Ray Diffraction for the analysis of minerals, bones and pigments
    Facilities
    • Microscopes and sample preparation equipment for microstructure analyses of metals and ceramics
    • Microwave Accelerated Reaction System for rapid sample preparation, i.e. extracting, digesting, dissolving, hydrolysing or drying organic or inorganic materials
    • Optical 3D-scanner for both high-resolution surface analyses of artefacts and for large-scale 3D documentation
    • Preparation and conservation laboratory primarily for metal artefacts
  • 52. Research programs
    • Svealand in the Vendel and Viking Period (finished)
    • Forts and Fortifications in the Mälaren Region AD 400-1100 (finished)
    • Us and Them – Cultural identity in the Middle Neolithic
    • Bread for the dead, bread for the living… Cereal-based food in the Late Iron Age
    • By House and Hearth – The chemistry of culture layers as a document of the subsistence of prehistoric man
    • Tracing Ancient Vegetable Food – Chemotaxonomy of plant lipid residues
    • Gender and Diet in the Neolithic