[email_address] INTEGRATION TECHNOLOGIES FOR AUTONOMOUS WIRELESS SENSORS
Sommaire <ul><li>Functional blocks </li></ul><ul><li>Applications </li></ul><ul><li>Enabling technologies </li></ul><ul><u...
Functional blocks of wireless sensors <ul><li>actuation/sensing </li></ul><ul><li>wireless connectivity </li></ul><ul><li>...
Silicon Technologies Trends <ul><li>0.35µ </li></ul><ul><li>0.25µ </li></ul><ul><li>0.18µ </li></ul><ul><li>0.13µ </li></u...
Applications : mobile terminals MIMOSA <ul><li>MIMOSA vision: the mobile terminal serves as a user interface  to ambient i...
Context capturing  <ul><li>Provide  heterogeneous wireless sensor network  solutions to enable  Context Capturing  to make...
Applications : health/fitness Suunto Sensewear CEA-LETI <ul><li>Challenges and future needs: </li></ul><ul><ul><li>motion ...
Applications : transports Source : EADS <ul><li>Accelerometers </li></ul><ul><li>tire pressure sensors </li></ul><ul><li>h...
Applications : environment & security <ul><li>structural health monitoring </li></ul><ul><li>Industrial plants </li></ul><...
Energy Scavenging & Energy Storage Energy scavenging 1,3 mV, 3V, 0,8 Hz Source : MIT Medialab Energy storage Li Ion batter...
<ul><li>Logic (HW/SW) </li></ul><ul><ul><li>Adaptation to available energy  </li></ul></ul><ul><ul><li>Dynamic power suppl...
Sensors <ul><li>Humidity </li></ul><ul><li>Accelerometer </li></ul><ul><li>Magnetometer </li></ul><ul><li>Pressure sensor ...
Sensor Interfaces Capteur Signal Conditionning ADC Corrections Gain, Bias, T  Temperature Sensor
802.15.3 UWB Wireless communications standards 10 kbits/s 100 kbits/s 1Mbits/s 10 Mbits/s 100 Mbits/s Débit Distance Text ...
Contactless links (RFID) <ul><li>2 fonctions élémentaires </li></ul><ul><ul><li>1- Power Transfer   </li></ul></ul><ul><ul...
c Figure of merit :   Wireless link:
<ul><li>specifications 802.15.4 : Zigbee </li></ul><ul><li>250kbit/s, 10 m </li></ul><ul><li>ISM band 16 channels in [2400...
Wireless link : UWB Principle : very short pulses (< 1ns) Low data rate + location <ul><li>challenges : </li></ul><ul><ul>...
Integrating system level design & IC design
Design tuning at system level (v.1) <ul><li>Breakthroughs in ULP radios  complete system modeling </li></ul>fine-tuning of...
Design tuning at system level (v.2) <ul><li>Breakthroughs in ULP radios  complete system modeling </li></ul>fine-tuning of...
Matlab simulation chain transmitter receiver channel and  some impairments
Matlab simulation chain <ul><li>Models for </li></ul><ul><ul><li>Receiver A/D bits </li></ul></ul><ul><ul><li>« bit true »...
Conclusions <ul><li>Microtechnologies/Mems may lead to breakthrough in wireless sensors </li></ul><ul><ul><li>Radio archit...
Upcoming SlideShare
Loading in...5
×

Integration Within Textiles

555

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
555
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Integration Within Textiles

  1. 1. [email_address] INTEGRATION TECHNOLOGIES FOR AUTONOMOUS WIRELESS SENSORS
  2. 2. Sommaire <ul><li>Functional blocks </li></ul><ul><li>Applications </li></ul><ul><li>Enabling technologies </li></ul><ul><ul><li>Energy scavenging, storage and management </li></ul></ul><ul><ul><li>Sensors & sensor interfaces </li></ul></ul><ul><ul><li>Data transmissions (standards, RFID, RF, UWB) </li></ul></ul><ul><li>System design and IC design issues </li></ul><ul><li>Conclusions </li></ul>
  3. 3. Functional blocks of wireless sensors <ul><li>actuation/sensing </li></ul><ul><li>wireless connectivity </li></ul><ul><li>embedded intelligence </li></ul><ul><li>energy management </li></ul>
  4. 4. Silicon Technologies Trends <ul><li>0.35µ </li></ul><ul><li>0.25µ </li></ul><ul><li>0.18µ </li></ul><ul><li>0.13µ </li></ul><ul><li>90n </li></ul><ul><li>65n </li></ul><ul><li>3.5 </li></ul><ul><li>0.5 </li></ul><ul><li>2.5 </li></ul>Analog ICs Voltage <ul><li>V dd (v) </li></ul><ul><li>b </li></ul><ul><li>3.3 </li></ul><ul><li>0.8 </li></ul>
  5. 5. Applications : mobile terminals MIMOSA <ul><li>MIMOSA vision: the mobile terminal serves as a user interface to ambient intelligence and as a gateway between local (sensor) information and global mobile services </li></ul><ul><li>The architecture is open for development of different vertical applications (well-being, health, home automation, etc.) </li></ul><ul><li>15 partners, 6 countries </li></ul><ul><ul><li>ST Microelectronics </li></ul></ul><ul><ul><li>Nokia </li></ul></ul><ul><ul><li>Legrand </li></ul></ul><ul><ul><li>Suunto </li></ul></ul><ul><ul><li>Sonion </li></ul></ul><ul><ul><li>… </li></ul></ul>Cellular network Cellular network Services (e.g, community , content ) IP network IP network Battery - powered sensor (BPS) 2 m Wireless remote - powered sensor (WRPS, selected ) Mobile terminal Short range radio User Interface to AI Applications Cellular Engine Embedded sensors 10 m Smart accessory ( Processors ) Ultra low power low cost SR radio Input devices ( sensors ) Memory (Data logger ) Smart accessory ( Processors ) Input devices ( sensors ) Memory (Data logger ) Ultra low power low cost SR radio RFID tag ( selected ) selected BPS Optical PointMe selection of objects WRPS Cellular network Cellular network Services (e.g, community , content ) IP network IP network Battery - powered Sensor (BPS) 2 m Wireless remote - powered sensor (WRPS, selected ) Mobile terminal Short range radio User Interface to AmI Applications Cellular Engine Embedded sensors 10 m Smart accessory ( Processors ) Ultra low power low cost SR radio Input devices ( sensors ) Memory (Data logger ) Smart accessory ( Processors ) Input devices ( sensors ) Memory (Data logger ) Ultra low power low cost SR radio Smart accessory ( Processors ) Ultra low power low cost SR radio Input devices ( sensors ) Memory (Data logger ) Smart accessory ( Processors ) Input devices ( sensors ) Memory (Data logger ) Ultra low power low cost SR radio RFID tag ( selected ) selected BPS Optical Point Me selection of objects WRPS
  6. 6. Context capturing <ul><li>Provide heterogeneous wireless sensor network solutions to enable Context Capturing to make Ambient networks Intelligent, in particular wireless and mobile systems beyond 3G; thus </li></ul><ul><li>To enable truly Multi-sensory and Personal mobile applications and services as well as assisting mobile communications through sensor information </li></ul>25 partners: Philips, IBM, EADS, Thales, Telefonica, Fujitsu, Mitsubishi, … Coordinator: LETI FP6 Call 4: Mobile & systems beyond 3G
  7. 7. Applications : health/fitness Suunto Sensewear CEA-LETI <ul><li>Challenges and future needs: </li></ul><ul><ul><li>motion capture, speed, … </li></ul></ul><ul><ul><li>integration within textiles, large area low cost electronics </li></ul></ul><ul><ul><li>Physiological parameters monitoring (lactate, glucose ,…) </li></ul></ul>
  8. 8. Applications : transports Source : EADS <ul><li>Accelerometers </li></ul><ul><li>tire pressure sensors </li></ul><ul><li>health monitoring (P,T, HUM, VIB) </li></ul>
  9. 9. Applications : environment & security <ul><li>structural health monitoring </li></ul><ul><li>Industrial plants </li></ul><ul><li>forest fire detection </li></ul><ul><li>Parasits in homes & forests </li></ul><ul><li>Homeland security </li></ul>
  10. 10. Energy Scavenging & Energy Storage Energy scavenging 1,3 mV, 3V, 0,8 Hz Source : MIT Medialab Energy storage Li Ion batteries <ul><ul><li>Thickness : 10 µm </li></ul></ul><ul><ul><li>Surfacic capacity : 100 µAh/cm² </li></ul></ul><ul><ul><li>Discharge peak current : 500 µA/cm² to 1 mA/cm 2 </li></ul></ul>Micro Fuel cells Catalyst electrolyte Silicon Current Collector Insulator Catalyst support Catalyst Current Collector Air Hydrogen
  11. 11. <ul><li>Logic (HW/SW) </li></ul><ul><ul><li>Adaptation to available energy </li></ul></ul><ul><ul><li>Dynamic power supply management </li></ul></ul><ul><ul><li>Wake up and idle mode </li></ul></ul>Energy Management <ul><li>V dd1 </li></ul><ul><li>Down </li></ul><ul><li>Converter </li></ul><ul><li>Up </li></ul><ul><li>Converter </li></ul><ul><li>V dd2 </li></ul><ul><li>Command </li></ul>DC/DC <ul><li>Monitoring </li></ul><ul><li>Adaptation </li></ul> C <ul><li>Load </li></ul><ul><li>regulation </li></ul>
  12. 12. Sensors <ul><li>Humidity </li></ul><ul><li>Accelerometer </li></ul><ul><li>Magnetometer </li></ul><ul><li>Pressure sensor </li></ul><ul><li>Gyroscope </li></ul><ul><li>Temp </li></ul><ul><li>Force </li></ul><ul><li>Chemical </li></ul><ul><li>Bio </li></ul><ul><li>… </li></ul>
  13. 13. Sensor Interfaces Capteur Signal Conditionning ADC Corrections Gain, Bias, T Temperature Sensor
  14. 14. 802.15.3 UWB Wireless communications standards 10 kbits/s 100 kbits/s 1Mbits/s 10 Mbits/s 100 Mbits/s Débit Distance Text Graphics Internet HiFi Audio Video streaming Digital Video Multi-channel Video 1 m 10 m 100 m 1 km 10 km 100 km BAN PAN LAN WAN 802.11.a/b/g Wi-Fi/HL 802.15.1 Bluetooth 802.15.4 Zigbee, UWB GSM/CDMA GPRS/3G LMDS 802.16 WI-Max
  15. 15. Contactless links (RFID) <ul><li>2 fonctions élémentaires </li></ul><ul><ul><li>1- Power Transfer </li></ul></ul><ul><ul><li>2- Bi-directional data transfer </li></ul></ul>POWER DATA POWER DATA <ul><li>Inductive coupling </li></ul><ul><ul><li>Magnetic field (Near field) at 13,56 MHz </li></ul></ul><ul><ul><li>Antenna = Bobine </li></ul></ul><ul><li>Electrical coupling </li></ul><ul><li>Electric field (Far field) at 868 MHz, 2,45 GHz </li></ul><ul><li>Antenna = planar or filaire ou planaire </li></ul><ul><li>Challenges: </li></ul><ul><ul><li>Performance : antenna, reading distance </li></ul></ul><ul><ul><li>complex functions (sensing tags) </li></ul></ul><ul><li>Fe= 200Hz,  14 bits </li></ul><ul><li>Capacitive Pressure Sensor from Tronic’s </li></ul><ul><li>Miniaturized Antennae </li></ul>7 mm Pressure Sensor
  16. 16. c Figure of merit : Wireless link:
  17. 17. <ul><li>specifications 802.15.4 : Zigbee </li></ul><ul><li>250kbit/s, 10 m </li></ul><ul><li>ISM band 16 channels in [2400-2480MHz] </li></ul><ul><li>Various topologies, tens of nodes </li></ul>Wireless link: narrow band zigbee like <ul><li>Challenges: </li></ul><ul><ul><li>Power reduction </li></ul></ul><ul><ul><ul><li>RF Mems integration (BAW filters) </li></ul></ul></ul><ul><ul><ul><li>RF functions integration </li></ul></ul></ul><ul><ul><li>Routing protocols </li></ul></ul>Low-noise LNA/Mixer T/R switch 0.5-1dB 2-3dB BAW Balun 1:2 or 1:4 100  200  or 400  1k-2k  100  Antenna 100  BAW Filter LC matching impedance 0 1 2 3 4 5 Data ratet range power location manufacturing cost node- density ZIGBEE
  18. 18. Wireless link : UWB Principle : very short pulses (< 1ns) Low data rate + location <ul><li>challenges : </li></ul><ul><ul><li>New architectures </li></ul></ul><ul><ul><ul><li>direct sampling </li></ul></ul></ul><ul><ul><ul><li>pulse genrators </li></ul></ul></ul><ul><ul><li>Synchronisation </li></ul></ul><ul><ul><li>Energy detetction </li></ul></ul><ul><ul><li>antenna </li></ul></ul><ul><li>Objectifs : </li></ul>p FCC =-41.3 dbm/MHz 802.11a P TX =-7.9 dBm P TX =-11.8 dBm 0 1 2 3 4 5 Data rate range power location manufacturing cost Node density UWB objecif
  19. 19. Integrating system level design & IC design
  20. 20. Design tuning at system level (v.1) <ul><li>Breakthroughs in ULP radios complete system modeling </li></ul>fine-tuning of specifications through system modeling Impact of receiver imperfections on BER : IC design System design <ul><ul><li>Intensive use of high-level languages </li></ul></ul><ul><ul><li>(Matlab, System C) </li></ul></ul>
  21. 21. Design tuning at system level (v.2) <ul><li>Breakthroughs in ULP radios complete system modeling </li></ul>fine-tuning of specifications through system modeling <ul><ul><li>Intensive use of high-level languages </li></ul></ul><ul><ul><li>(Matlab, System C) </li></ul></ul>IC design System design RF MEMS design electrical models of RF MEMS & CAD tools system models of RF MEMS demand new devices or specifications (from the IC point of view, eg. load impedance) demand new devices or specifications (from the system point of view, eg. filter performance) <ul><li>exploit new opportunities offered by RF MEMS </li></ul><ul><li>define complete system simulation tools at a very early stage. </li></ul><ul><li>reinforce collaboration between all actors : system, IC, and MEMS designers . </li></ul>
  22. 22. Matlab simulation chain transmitter receiver channel and some impairments
  23. 23. Matlab simulation chain <ul><li>Models for </li></ul><ul><ul><li>Receiver A/D bits </li></ul></ul><ul><ul><li>« bit true » digital model </li></ul></ul><ul><ul><li>Carrier frequency offsets </li></ul></ul><ul><ul><li>Symbol clock frequency offset </li></ul></ul><ul><ul><li>RF oscillator phase noise (1/f² and white </li></ul></ul><ul><ul><li>Limiter amplifier </li></ul></ul>example : adjacent channel rejection <ul><li>Models for </li></ul><ul><ul><li>Receiver NF </li></ul></ul><ul><ul><li>Receiver gain </li></ul></ul><ul><ul><li>DC offset </li></ul></ul><ul><ul><li>DC offset rejection filter </li></ul></ul><ul><ul><li>IQ imbalance </li></ul></ul><ul><ul><li>Adjacent and alternate channel </li></ul></ul><ul><ul><li>Channel filter </li></ul></ul><ul><li>Reference BER formula (non coherent) </li></ul><ul><li>Reference simulation chain </li></ul><ul><ul><li>PER target = 1e-2 </li></ul></ul><ul><ul><li>PSDU = 22 bytes </li></ul></ul><ul><ul><li>BER = 5.7e-5 </li></ul></ul>
  24. 24. Conclusions <ul><li>Microtechnologies/Mems may lead to breakthrough in wireless sensors </li></ul><ul><ul><li>Radio architectures </li></ul></ul><ul><ul><li>Sensor interfaces </li></ul></ul><ul><ul><li>Energy scavenging and management </li></ul></ul><ul><li>The convergence of mechanical/thermal/chemical functions and electrical world of ICs </li></ul><ul><ul><li>new design methodologies </li></ul></ul><ul><ul><li>new design tools </li></ul></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×