• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
When data becomes ubiquitous
 

When data becomes ubiquitous

on

  • 339 views

 

Statistics

Views

Total Views
339
Views on SlideShare
339
Embed Views
0

Actions

Likes
3
Downloads
2
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    When data becomes ubiquitous When data becomes ubiquitous Presentation Transcript

    • When  Data  Becomes  Ubiquitous:   Managing  the  Presence  in  the  City   of  Facebook   Anja  Bechmann,     Head  of  Digital  Footprints  Research  Group,     Aarhus  University,  DK     PIT  Summer  School,  August  20,  IT-­‐City,  Aarhus,  DK  
    • Services  become  interwoven  
    • Data  becomes  ubiquitous  
    •     RQ:  How  do  users  navigate  in  this  interoperable   service  of  Facebook?  
    • Interoperability   •  Technical  interoperability   •  Personal  interoperability    
    • Method  &  dataset   a  qualitaQve  study  combining  open  API  data  retrieval,   screen  dump  analysis  of  Facebook  apps,  and  semi-­‐ structured  group  interviews  on  Facebook.       N=17  (15  Danish  high  school  students,  2  American   College  students,  all  18-­‐20  years  old)     API  data:   enQre  Qmeline  (24,062  data  units   116  closed,  secret,  and  open  groups  (10,213  data  units)   newsfeed  for  a  14  days  period  (41,168  data  units).    
    • findings   Average  of  60  FB  apps     Typical  quizzes,  but  also  MyBirthday  Calendar,   SpoQfy  and  CiQes  I’ve  visited     Youtube  is  the  top  external  applicaQon  used  in  the   dataset  (videolink)     Consider  services  separate  per  default  in  terms  of   content  uploaded  (e.g.  Twicer)    
    • findings   •  The  parQcipants  do  not  use  privacy  sedngs  to   control  interoperability  of  personal  data   primarily  but  they  place  sensiQve  content  in   either  inbox,  chat,closed  or  secret  groups.  
    • findings  
    • Coding  content  in  groups  
    • •  SensiQve  data:   Images  more  personal  than  name   Death,  ilnesses,  things  they  do  not  want  to  be   confronted  with  (e.g.  relaQonship  status)  
    • Conclusion   •  Facebook  as  an  effecQve  communicaQve  tool  to   micro-­‐coordinate  and  socialize  with  exisQng   friends  from  different  arenas.     •  The  use  of  Facebook  is  mostly  oriented  towards   the  closed  features  of  inbox,  chat  and  groups.     •  ExisQng  literature  ogen  focus  on  Qmeline  -­‐>  need   to  focus  elsewhere  on  the  more  personal   features  of  Facebook  as  equally  (if  not  most)   central  hubs  of  communicaQon.      
    •     www.digitalfootprints.dk  
    • Research  interest   •  More  fenced-­‐off  and  ubiquitous  internet  (cross-­‐plaiorm/ cross-­‐services  through  login)   •  How  do  we  get  access  to  closed  data  about  users  on  private   social  networks  (e.g.  Facebook)?   –  In  order  to  analyze  user  behaviors  with  FB  across  websites   –  User  data  structures   –  Analyze  navigaQon  outside  FB  but  related  to  FB  (checkins)   –  Analyze  usage  pacerns  during  the  day  (Qmely)   –  Analyze  digital  cross-­‐plaiorm  use  of  FB  (laptop,  smartphones,   pdas)   –  Analyze  exposures  to  content  from  other  website/media      
    • ExisQng  methods   •  In  “virtual  ethnography”  (howard,  wicel,  marcus,   markham,  kendall,  baym,  boyd)   –  Friending:   •  You  are  not  sure  to  get  all  acQvity  because  of  sorQng  algorithms  of   Facebook   •  You  must  manually  export  them  to  see  pacerns  over  Qme     •  Ethnography   –  Following  them  physically   •  Time  consuming   •  Too  much  intervenQon  in  everyday  rhytms   •  But  you  will  get  a  lot  of  detail  on  the  context  of  the  acQviQes  on   Facebook  that  is  not  possible  to  get  otherwise  
    • DIGITAL  FOOTPRINTS  as  data  retrieval   tool   •  Act  as  an  external  ‘company’/third  party  when   extracQng  data  from  Facebook   •  a  webbased  system   •  Using  Facebook’s  graph  API     •  User  consent  that  DIGITAL  FOOTPRINTS  draw  info  on  users   like  any  other  applicaQon/website  using  facebook  connect   •  Users  can  withdraw  anyQme  they  like   •  Researchers  can  mine  data  from  the  users  and  answer   research  quesQons  in  qualitaQve/quanQtaQve  (?)  studies  
    •   Digital  Footprints    
    • Data  extracQons  e.g.   •  Demographics   •  Newsfeeds   •  Network  and  friends   •  Likes   •  Check-­‐ins   •  Private/public  groups   •  Pictures,  status  updates  and  uploaded  material   •  Friends  material  through  consent  of  the   parQcipant  etc.  etc.  etc….    
    • Methodological  triangulaQon  (e.g.)   1.  HarvesAng  private  data  with  consent,  mining  these  data  (DIGITAL   FOOTPRINTS)   2.  Focus  group  interviews  with  parQcipants  to  understand  their  adtudes  and   strategies     -­‐>Digital  Footprints  can  help  answer  “what”  and  qualify  other  methods  for   asking  “why”      
    • Strengths   –  Researchers  can  easily  send  link  via  email  to  parQcipants,  asking  them  to  sign  up  for  the   research  project   –  Researchers  can  access  closed  data  without  profiles  being  public   –  Data  is  saved  in  database  which  makes  it  possible  to  extract  and  sort  different  pacerns   –  Digital  Footprints  also  allow  researchers  to  study  the  newsfeed  of  the  parQcipants   –  Researchers  can  study  a  variety  of  Facebook  acQviQes  in  one  system  
    • Limitations –  Methodologically,  ideally  users  must  be  chosen  beforehand  and  asked  to  parQcipate   (external  validaQon)   –  Difficult  to  create  representaQve  sampling/data   –  Digital  Footprints  relies  on  the  graph  API  se3ngs  which  is  controlled  by  Facebook   –  Therefore  primarily  qualitaQve  virtual  ethnographic  tool   –  Cannot  register  user  traffic  pacerns  (click-­‐through  analysis)  
    • Future  research   1.  (How)  can  we  make  data  retrieval  through  Facebook  Graph  APIs  representaQve   –  how  do  we  recruit  for  quanQtaQve  analysis   •  Problems:   –  RepresentaQve  users  or  certain  kind  of  users  that  uses  this  applicaQon   –  If  not  applicaQon  –  certain  types  of  users  that  has  public  profiles   –  What  is  the  Facebook  populaQon  from  which  we  sample?   •  Only  soluQon  (visible  for  us):   –   is  to  recruit  a  representaQve  sample  and  then  send  out  the  invitaQon  to   join?   •  What  about  the  ethical  quesQon  of  retrieving  friends  data  as  well?  
    • Law   •  Privacy  Law:   –  Comply  to  EU  direcQve  1995,  1999,  2002,  2011  (with  explicit  consent,  limited   Qme,  explicit  purpose,  only  data  needed  for  that  specific  purpose  etc.)     •  Danish  Data  ProtecQon  Agency:   –  Apply  for  permission  to  make  research  project  involving  personal  and  sensiQve   user  data   •  Facebook’s  terms  of  (data)  use:   –  You  can  only  retrieve  data  you  need  (data  protecQon  law)   –  You  cannot  redistribute  user  data  to  any  third  party  stakeholder   –  User  must  be  able  to  delete  their  data  from  the  research  project   –  Keep  info  up  to  date….??   –  User’s  friends  data  can  only  be  used  in  the  context  of  the  user’s  experience  on   your  applicaQon…??  (we  do  not  sell  it)  
    • Ethics   •  Issue  no.  1:   –  When  retrieving  data  friends  will  comment,  like  etc.  on  the  parQcipant’s  data  and  therefore  be   visible  in  the  system   –  Working  on  effecQve  anonymizaQon  methods  before  release  in  October     •  Issue  no.  2:   -­‐  Ethically  we  are  interested  in  the  best  informed  consent   -­‐  We  are  working  with  three/four  step  consent  procedures:  verbal,  email,  invite  text,  and  facebook   consent  text   •  Issue  no.  3:   -­‐  We  are  interested  in  the  best  possible  storage  of  the  data   -­‐  We  are  working  with  a  server  database  model  located  at  au  where  every  project  has  its  own   database  structure   •  Issue  no.  4:   -­‐  We  are  interested  in  varifying  researchers  as  such  and  only  legal  research  projects   -­‐  We  demand  an  university  email  adress  from  registered  universiQes   -­‐  If  working  with  full  idenQfiable  data  we  consider  that  researchers  need  to  document  legally   permission  for  this  (??)      
    •     Thank  you!   Digitalfootprints.dk  /@digifeet   anjabechmann@gmail.com  /  @anjabechmann    +45  51335138