• Save
Crowdsourcing Science
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Crowdsourcing Science

  • 3,842 views
Uploaded on

Dissertation proposal defense for a comparative case study of virtual citizen science projects, focusing on the concepts of virtuality, technology, organizing, participation, and......

Dissertation proposal defense for a comparative case study of virtual citizen science projects, focusing on the concepts of virtuality, technology, organizing, participation, and outcomes.

Successfully defended with no revisions on 5 May, 2010.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
3,842
On Slideshare
2,986
From Embeds
856
Number of Embeds
7

Actions

Shares
Downloads
0
Comments
0
Likes
5

Embeds 856

http://citsci.syr.edu 577
http://voss.syr.edu 239
http://voss-test.syr.edu 24
http://paper.li 7
http://www.slideshare.net 5
http://webcache.googleusercontent.com 2
http://www.crowdsourcing.org 2

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Crowdsourcing Science Organizing Virtual Participation  in Knowledge Production Andrea Wiggins 5 May, 2010
  • 2. Citizen Science • Projects involving the public with scientists in  collaborative research – Diverse contributors, activities, and goals – Volunteers contribute data collection or reduction • Virtual citizen science – All public participation is ICT‐mediated
  • 3. Motivation •What does it take to do science with  strangers on the Internet? – Man is still the most extraordinary computer of all.   ~John F. Kennedy – Many hands make light work.  ~John Heywood
  • 4. Problem Statement • Creating effective technologies for virtual  participation requires understanding how  research design and implementation decisions  influence processes and outcomes in citizen  science. • Goal: support design and management of  citizen science cyberinfrastructure
  • 5. Research Questions • RQ1: – How do virtuality and technology alter organizing in citizen science? • RQ2: – How do virtuality and technology shape participation in citizen science? • RQ3: – How do organizing and participation influence scientific outcomes in citizen science?
  • 6. Concepts Discontinuities, continuities, & physicality Virtuality Watson‐Manheim, Chudoba & Crowston; Harrison & Dourish Technology Tools & routines for participation Process of creating order; goal‐oriented activity Organizing Cyert & March; Stinchcombe; Weick; Galbraith Participation Taking part Scientific  Formal knowledge production: papers, data sets Outcomes
  • 7. Related Research • Public participation in science – Purposes and forms of engagement – Informal science education, policy, STS • Irwin, Bonney (et al, et al, et al) • Scientific collaboration – Broader context of practice • Sonnenwald, Finholt • Online communities – Participation in virtual environments • Crowston, Haythornthwaite, Preece & Shneiderman
  • 8. Virtual Participation Process Model • Literature – Small group theory • Hackman, McGrath, Ilgen,  Hollenbeck, Guzzo & Dickson – Volunteerism • Pearce, Wilson, Cnaan &  Cascio, Sproull & Kiesler • Pilot study – Context – Processes
  • 9. Pilot Study • Goals – Test theory & field research methods – Familiarity with context of practice  • Case study of a new citizen science project – Partnership for monitoring at National Parks – Phenology: the study of recurring plant and animal  life cycle stages, or phenophases
  • 10. Northeast Phenology Monitoring • Organized virtually by diverse partners – Federal agencies, nonprofits, networks, academics – Different goals that rely on the same data – Coordinating via email & conference calls • Findings – Complex organizing in decentralized projects – Context shapes research design & implementation
  • 11. Methodology • Comparative case study methodology – Complex sociotechnical phenomenon – Early stage of research – Explanatory process theory • Theoretical sampling – 2 ‐ 4 projects with different characteristics • Multiple data sources and analysis techniques
  • 12. Research Design • Four overlapping phases – Data collection from June 2010 ‐ December 2010 – Data analysis from July 2010 ‐ July 2011
  • 13. Field Research Data Collection • Interviews – Ethnographic, semi‐structured & informal – Project leaders & volunteers • Participant observation – Contribute as a volunteer – Observe volunteers & project leaders • Secondary data, documents & artifacts
  • 14. Qualitative Analysis • Analysis concurrent with data collection – Flexible set of techniques • Within‐case analysis – Case descriptions & process analysis • Cross‐case analysis – Comparisons building on within‐case analysis • Validation – Auditor, participant review, expert panel
  • 15. Theoretical Sampling Criteria RQ Concept Model Dimensions Input: environment spatial, temporal, physical Virtuality Input: technology task support, social support Technology Processes: organizing,  project development, research  Organizing research design, coordination Participation Processes: participation idealized, task, social Scientific  Outputs: knowledge,  research products, discovery,  Outcomes innovation new/revised approaches
  • 16. Three Potential Cases Project Organization Tasks Spatial Temporal Physical Social IT Outcomes Multiple  GalaxyZoo academic PIs Reduction ✓ ✓ ✓ ✓ Great  Single  Sunflower  academic PI Collection ✓ ✓ ✓ ✓ Project 2 nonprofit  Collection,  eBird organizations analysis ✓ ✓ ✓ ✓
  • 17. Great Sunflower Project • Collecting data on pollinator service (bees!) – Started in 2008 by a single academic researcher – Very successful in volunteer recruitment •2 weeks: 15K volunteers •1 year: 55K volunteers •2 years: 77K volunteers – Participation involves: •Planting sunflowers, 15‐minute observation samples •Online garden description & data entry on Drupal site
  • 18. eBird • Collecting bird abundance and distribution data – Launched in 2002 by Cornell Lab of Ornithology  (with National Audubon Society) – Considered a “gold standard” by other projects •Currently: 1.5M ‐ 2M observations/month •2002 ‐ 2009: 21M observations, 35K users, 180K locations – Participation involves: •Choosing count method & recording bird observations •Entering observations and metadata online
  • 19. Galaxy Zoo • Classifying images of galaxies – Started in 2007 by a team of academic astronomers – Instant success and exciting new discoveries •Galaxy Zoo 1, Year 1: 50M classifications, 150K volunteers •Galaxy Zoo 2, Year 2: 60M classifications in 14 months •Galaxy Zoo : Hubble, Year 3: Launched April 2010 – Participation involves: •Online visual classification tasks using a custom platform
  • 20. Expected Contributions • Practical and theoretical – Citizen science •Empirical study •Theorizing practice – Virtual organizations •Extending theory – Cyberinfrastructure •Conceptualizing large‐scale collaboration
  • 21. Summary • What – Comparative case study of virtual citizen science • How – Field research methods with qualitative analysis • Why – Provide context for technology design and  management in citizen science
  • 22. Thanks! • www.ebird.org • www.galaxyzoo.org • www.greatsunflower.org • More: – www.scienceforcitizens.net – www.birds.cornell.edu/citscitoolkit/projects