• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Citizen Science 101: What Every Researcher Should Know About Crowdsourcing Science
 

Citizen Science 101: What Every Researcher Should Know About Crowdsourcing Science

on

  • 731 views

Presentation for the Center for Nonlinear Studies at Los Alamos National Labs.

Presentation for the Center for Nonlinear Studies at Los Alamos National Labs.

Statistics

Views

Total Views
731
Views on SlideShare
727
Embed Views
4

Actions

Likes
5
Downloads
16
Comments
0

2 Embeds 4

http://www.scoop.it 3
https://www.linkedin.com 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

Citizen Science 101: What Every Researcher Should Know About Crowdsourcing Science Citizen Science 101: What Every Researcher Should Know About Crowdsourcing Science Presentation Transcript

  • Ci#zen  Science  101 What  Every  Researcher  Should  Know   About  Crowdsourcing  Science Andrea  Wiggins Postdoctoral  Fellow DataONE  &  Cornell  Lab  of  Ornithology 17  September,  2012Tuesday, September 18, 12
  • What  is  ci#zen  science? Members  of  the  public  engaging  in  real-­‐world   scien#fic  research •Crowdsourcing •Collabora#on •Community 2Tuesday, September 18, 12
  • What  is  ci#zen  science? public participation in science cro r so w d - ee g nt in urc ing olu itor v n mo online communities * infrastructure cyber- scientific collaboration = citizen science 3Tuesday, September 18, 12
  • By  any  other  name... 4Tuesday, September 18, 12
  • Varia#ons  on  a  theme Label Research  Domain Key  Features Civic  science Science  communica#on Public  par#cipa#on  in  decisions  about  science People’s  science Poli#cal  science Social  movements  for  people-­‐centered  science Ci#zen  science Ecology Public  par#cipa#on  in  scien#fic  research Volunteer/community-­‐ Natural  resource   Long-­‐term  monitoring  and  interven#on based  monitoring management Par#cipatory  ac#on   Behavioral  science Researcher  &  community  par#cipa#on  &  ac#on research Ac#on  science Behavioral  science Par#cipatory,  emphasizes  tacit  theories-­‐in-­‐use Community  science Psychology Par#cipatory  community-­‐centered  social  science Living  Labs Management Public-­‐private  partnership  for  innova#on 5Tuesday, September 18, 12
  • Scien#fic  tasks PPSR$models: Contributory* Collabora1ve* CoACreated* Define*a*ques1on/issue* Gather*informa1on* Develop*explana1ons* Design*data*collec1on*methods* Collect*samples* Analyze*samples* Analyze*data* Interpret*data/conclude* Disseminate*conclusions* Discuss*results/inquire*further* 6Tuesday, September 18, 12
  • Why  do  research  this  way? Big  data • Ul#mate  mobile  intelligent  sensor  network • Spa#otemporal  range 7Tuesday, September 18, 12
  • Why  do  research  this  way? Big  data • Ul#mate  mobile  intelligent  sensor  network • Spa#otemporal  range Human  computa#on • Image  processing  &  puzzle  solving 8Tuesday, September 18, 12
  • Why  do  research  this  way? Big  data • Ul#mate  mobile  intelligent  sensor  network • Spa#otemporal  range Human  computa#on • Image  processing  &  puzzle  solving Addressing  local  concerns • Water  quality,  noise  pollu#on  data 9Tuesday, September 18, 12
  • Why  do  research  this  way? Big  data • Ul#mate  mobile  intelligent  sensor  network • Spa#otemporal  range Human  computa#on • Image  processing  &  puzzle  solving Addressing  local  concerns • Water  quality,  noise  pollu#on  data Simple  economics • There  are  more  non-­‐scien#sts  than  scien#sts 10Tuesday, September 18, 12
  • Who  par#cipates? The  public  is  diverse  demographically  and  intellectually • Make  no  assump#ons! • But... 11Tuesday, September 18, 12
  • Who  par#cipates? The  public  is  diverse  demographically  and  intellectually • Make  no  assump#ons! • But... Many  non-­‐professional  communi#es  have  specialized  skills • Rock  climbers:  lichen • Gamers:  protein  folding • Weather  buffs:  precipita#on 12Tuesday, September 18, 12
  • Who  par#cipates? The  public  is  diverse  demographically  and  intellectually • Make  no  assump#ons! • But... Many  non-­‐professional  communi#es  have  specialized  skills • Rock  climbers:  lichen • Gamers:  protein  folding • Weather  buffs:  precipita#on Educa#on  ≠  exper#se,  exper#se  ≠  educa#on • Ornithologists  vs.  birders:  no  contest 13Tuesday, September 18, 12
  • Just  a  few  examples 14Tuesday, September 18, 12
  • The  Great  Sunflower  Project Collec#ng  data  on  pollinator  service  (bees!) • Par#cipa#on  involves: • Plan#ng  sunflowers • Crea#ng  garden  descrip#on  on  Drupal  website • Recording  15-­‐minute  observa#on  samples   on  data  sheet • Online  data  entry • Started  in  2008  by  a  single  academic  researcher • Collects  data  across  North  America • Very  successful  in  akrac#ng  volunteer  interest 15Tuesday, September 18, 12
  • eBird Collec#ng  bird  abundance  and  distribu#on  data • Par#cipa#on  involves: • Choosing  observa#on  methods • Recording  bird  observa#ons  (analog  or  digital) • Entering  observa#ons  and  metadata  online • Launched  in  2002  by  Cornell  Lab  of  Ornithology   (with  Na#onal  Audubon  Society) • World’s  largest  biodiversity  data  set:  100M  records • Currently  receives  about  3M  observa#ons/month • Data  used  in  research  and  decision-­‐making  for  land  management,  policy   (and  recrea#on) 16Tuesday, September 18, 12
  • Galaxy  Zoo Classifying  images  of  galaxies • Par#cipa#on  involves • Looking  at  pictures  of  galaxies  online • Answering  a  few  ques#ons  about  them • Started  in  2007  by  a  team  of  academic  astronomers • Instant  success  and  exci#ng  new  discoveries • Galaxy  Zoo  1,  Year  1:  50M  classifica#ons,  150K  volunteers • Galaxy  Zoo  2,  Year  2:  60M  classifica#ons  in  14  months • Hanny’s  Voorwerp • Green  Pea  galaxies 17Tuesday, September 18, 12
  • Are  the  data  any  good? #1  concern  of  the  unini#ated • If  the  data  aren’t  good,  it’s  because  the  design  is  wrong • Numerous  QA/QC  mechanisms;  75%  use  more  than  one 18Tuesday, September 18, 12
  • Are  the  data  any  good? #1  concern  of  the  unini#ated • If  the  data  aren’t  good,  it’s  because  the  design  is  wrong • Numerous  QA/QC  mechanisms;  75%  use  more  than  one Expert  review:  77% Photos:  40% Online  +  paper:  33% Replica#on:  23% QA/QC  training:  22% Automa#c  filtering:  18% Uniform  equipment:  15% 19Tuesday, September 18, 12
  • Are  the  data  any  good? #1  concern  of  the  unini#ated • If  the  data  aren’t  good,  it’s  because  the  design  is  wrong • Numerous  QA/QC  mechanisms;  75%  use  more  than  one Expert  review:  77% Expert  review  +... Photos:  40% Online  +  paper:  33% Photos:  23% Replica#on:  23% Automa#c  filtering:  18% QA/QC  training:  22% Paper  data  sheets:  17% Automa#c  filtering:  18% Replica#on:  17% Uniform  equipment:  15% Photos  +  paper:  10% 20Tuesday, September 18, 12
  • What  does  it  accomplish? engage%cri)cal%thinking% (Trumbull%et%al%2000)% science%learning,%bonding% (Kountoupes%and%Oberhauser%2008)% environmental%ac)on;%social%networks% (Overdevest%et%al.%2004)% social%capital% (Ballard%2008)% improved%policy% (Wing%et%al.%2008)% 21Tuesday, September 18, 12
  • What  does  it  accomplish? documen(ng*range*shi0s* (Bonter*et*al.*unpublished*data)* iden(fying*poten(al*mismatches* (Batalden*et*al.*2007)* iden(fying*vulnerable*species* (Crimmins*et*al*2008,*2009)* health*planning* (Leve(n*and*Van*de*Water*2008)* an(cipa(ng*effects*on*water*sources* (e.g.,*CoCoRaHS)* processing  large  image  data  sets (e.g.,  Zooniverse  projects) applying  human  computa#on  skills (e.g.,  Foldit) 22Tuesday, September 18, 12
  • What  does  it  accomplish? BIG  DATA! 23Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable 24Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor 25Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor • Managing  volunteers  is  never  free 26Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor • Managing  volunteers  is  never  free It’s  just  outreach 27Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor • Managing  volunteers  is  never  free It’s  just  outreach • Some#mes,  but  not  that  oten 28Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor • Managing  volunteers  is  never  free It’s  just  outreach • Some#mes,  but  not  that  oten Ci#zen  science  threatens  conven#onal  science 29Tuesday, September 18, 12
  • Common  myths Non-­‐professionals’  data  is  unreliable It’s  free  labor • Managing  volunteers  is  never  free It’s  just  outreach • Some#mes,  but  not  that  oten Ci#zen  science  threatens  conven#onal  science • Not  a  replacement,  but  a  complement • Achieves  things  professional  science  can’t/wouldn’t 30Tuesday, September 18, 12
  • Ci#zen  science  in  the  21st  century Expansion  into  new  areas • Protein  folding  (Foldit) • Synthe#c  RNA  design  (EteRNA) 31Tuesday, September 18, 12
  • Ci#zen  science  in  the  21st  century Expansion  into  new  areas • Protein  folding  (Foldit) • Synthe#c  RNA  design  (EteRNA) Increasingly  ICT-­‐mediated • Mobile  technologies  in  the  field • Image  processing  and  problem  solving 32Tuesday, September 18, 12
  • Ci#zen  science  in  the  21st  century Expansion  into  new  areas • Protein  folding  (Foldit) • Synthe#c  RNA  design  (EteRNA) Increasingly  ICT-­‐mediated • Mobile  technologies  in  the  field • Image  processing  and  problem  solving Bigger  and  beker  data • Quality  is  an  issue,  but  not  a  showstopper • Global  workforce  of  cogni#ve  surplus • Public  has  more  exper#se  than  you  expect 33Tuesday, September 18, 12
  • DataONE  PPSR  Working  Group Purpose: • Improve  quality,  quan#ty,  and  accessibility  of  PPSR  data • Advance  integra#on  of  PPSR  data  in  conven#onal  science Products: • Data  Management  Guide  for  PPSR  -­‐  coming  soon! • Ar#cles  in  August  FREE  special  issue • Data  quality  &  valida#on  paper • Involved  in  several  ini#a#ves for  developing  a  community   of  prac#ce 34Tuesday, September 18, 12
  • Thanks! andrea.wiggins@cornell.edu @AndreaWiggins dataone.org birds.cornell.edu ci#zenscience.org andreawiggins.com 35Tuesday, September 18, 12