Your SlideShare is downloading. ×
0
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Múltiplos e divisores
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Múltiplos e divisores

39,137

Published on

Noções de divisibilidade e múltiplos para o ensino fundamental.

Noções de divisibilidade e múltiplos para o ensino fundamental.

Published in: Education, Technology
0 Comments
10 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
39,137
On Slideshare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
847
Comments
0
Likes
10
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. MÚLTIPLOS E DIVISORES Aluna: Ane da Silva Oliveira Chagas PÓLO: RIO BONITO
  • 2. “Um Objeto de Aprendizagem é um arquivo digital (imagem, filme, etc.) que pretende ser utilizado para fins pedagógicos e que possui, internamente ou através de associação, sugestões sobre o contexto apropriado para sua utilização”. (Sosteric & Hesemeier, 2001).
  • 3. A IDEIA DE MÚLTIPLO E DIVISOR É CONHECIDA DESDE A ANTIGÜIDADE GREGA. NAQUELA ÉPOCA, OS SÁBIOS DAVAM TANTA IMPORTÂNCIA AOS NÚMEROS QUE LHES ATRIBUÍAM CARACTERÍSTICAS HUMANAS. PARA VOCÊS TEREM UMA IDEIA, ELES AGRUPAVAM OS NÚMEROS EM MASCULINOS ( OS ÍMPARES) E FEMININOS ( OS PARES). MÚLTIPLOS E DIVISORES
  • 4. CRITÉRIOS DE MÚLTIPLOS E DIVISORES • Divisibilidade Critérios de divisibilidade: • São critérios que nos permite verificar se um número é divisível por outro sem precisarmos efetuar grandes divisões. • Um número natural é divisível por outro natural, excluindo-se o zero, se a divisão entre eles é exata, ou seja, se tem resto zero. • Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.  Exemplos : • 8490é divisível por 2, pois termina em 0. • 895 não é divisível por 2, pois não é um número par
  • 5. •Divisibilidade por 3 :Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 870 é divisível por 3, pois a soma de seus algarismos é igual a 8+7+0=15, como 15 é divisível por 3, então 870 é divisível por 3. •Divisibilidade por 4 :Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 9500 é divisível por 4, pois termina em 00. 6532 é divisível por 4, pois 32 é divisível por 4. 836 é divisível por 4, pois 36 é divisível por 4. 9870 não é divisível por 4, pois não termina em 00 e 70 não é divisível por 4. •Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 425 é divisível por 5, pois termina em 5. 78960 é divisível por 5, pois termina em 0. 976 não é divisível por 5, pois não termina em 0 nem em 5.
  • 6. •Divisibilidade por 6: Um número é divisível por 6 quando é divisível por 2 e por 3 ao mesmo tempo. Exemplos: 6456 é divisível por 6, porque é divisível por 2e por 3 ao mesmo tempo. 984 não é divisível por 6, é divisível por 2, mas não é divisível por 3. 357 não é divisível por 6, é divisível por 3, mas não é divisível por 2. •Divisibilidade por 8: Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 2000 é divisível por 8, pois termina em 000. 98120 é divisível por 8, pois 120 é divisível por 8. 78341 não é divisível por 8, pois 341 não é divisível por 8. •Divisibilidade por 9: Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 6192 é divisível por 9, pois a soma de seus algarismos é igual a 6+1+9+2=18, e como 18 é divisível por 9, então 6192 é divisível por 9. Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 8970 é divisível por 10, pois termina em 0. 5987 não é divisível por 10, pois não termina em 0.
  • 7. MÚLTIPLOS • Se um número é divisível por outro, diferente de zero, então dizemos que ele é múltiplo desse outro. • Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais. Exemplo: os múltiplos de 7 são: 7x0 , 7x1, 7x2 , 7x3 , 7x4 , ... = 0 , 7 , 14 , 21 , 28 , ... • ATENÇÃO: • Observações importantes 1) Um número tem infinitos múltiplos 2) Zero é múltiplo de qualquer número natural
  • 8. NÚMEROS PRIMOS • Número primo: É quando um número só é divisível por dois números diferentes; 1 e ele mesmo.  Exemplos: • 2 tem apenas os divisores 1e 2, portanto 2 é primo. 23 tem apenas os divisores 1e 23, portanto 23 é primo. 10 tem os divisores 1, 2, 5e 10, portanto 10 não é primo. Atenção: • 1 não é um número primo, porque ele tem apenas um divisor ele mesmo. • 2 é o único número primo que é par. • Os números que têm mais de dois divisores são chamados números compostos.  Exemplo: 36 tem mais de dois divisores então 36 é um número composto.
  • 9. Como saber se um número é primo Devemos dividir o número dado pelos números primos menores que ele, até obter um quociente menor ou igual ao divisor. Se nenhum das divisões for exata, o número é primo. Decomposição em fatores primos Todo número natural, maior que 1, pode ser escrito na forma de uma multiplicação em que todos os fatores são números primos. É o que nós chamamos de forma fatorada de um número. Decomposição do número 36: 36 =9 x 4 36 = 3 x 3 x 2 x 2 36 = 3 x3 x 2 x 2 = 22x32 No produto 2 x 2 x 3 x 3 todos os fatores são primos. Chamamos de fatoração de 36 a decomposição de 36 num produto de fatores primos.
  • 10. Método Prático Escrevera Forma Fatorada de um Número Natural Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: ºDividimos o número pelo seu menor divisor primo; 2ºA seguir,dividir o quociente obtido pelo seu menor divisor primo. 3ºProceder dessa forma, daí por diante, até obter o quociente 1.
  • 11. Determinação dos divisores de um número Na prática determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 72: 1ºFatoramos o número 72. 2ºTraçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número. 3º Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo. 4º Os divisores já obtidos não precisam ser repetidos. Então o conjunto dos divisores de 72 = {1,2,3,4,6,8,9,12,18,36,72}
  • 12. Máximo Divisor Comum (mdc) O máximo divisor comum entre dois ou mais números naturaisnão nulos (números diferentes de zero) é o maior número queé divisor ao mesmo tempo de todos eles. Não vamos aqui ensinar todos as formas de se calcular o mdc, vamos nos ater apenas a algumas delas. Regra das divisões sucessivas Esta regra é bem prática para o calculo do mdc, observe: Exemplo: Vamos calcular o mdc entre os números 160 e 24. 1º: Dividimos o número maior pelo menor. 2º: Como não deu resto zero, dividimos o divisor pelo resto da divisão anterior. 3º: Prosseguimos com as divisões sucessivas até obter resto zero. O mdc (64; 160) = 32
  • 13. mmc (18, 25, 30) = 720 1º: Escrevemos os números dados, separados por vírgulas, e colocamos um traço vertical a direita dos números dados. 2º: Abaixo de cada número divisível pelo fator primo colocamos o resultado da divisão. O números não divisíveis pelo fator primo são repetidos. 3º: Continuamos a divisão até obtermos resto 1 para todos os números. Mínimo Múltiplo Comum - MMC
  • 14. Objeto Aprendizagem - JOGOS Os jogos quando convenientemente planejados, são um recurso pedagógico eficaz para a construção do conhecimento matemático. Para que o jogo seja um material produtivo em sala, o professor deve ter alguns cuidados ao escolher os jogos a serem aplicados como: •não tomar o jogo algo obrigatório; •escolher jogos em que o fator sorte não interfira nas jogadas, permitindo que vença aquele que descobrir as melhores estratégias; •estabelecer regras; • estudar o jogo antes de aplicá-lo ou seja jogá-lo antes.
  • 15. O JOGO •BORBOLETAS •ANIMAÇÃO
  • 16. O JOGO Apanhar as borboletas que carregam os números certos, no mais curto espaço de tempo. Cada jogo é constituído por 3 fases (números primos, divisores, etc...). Sempre que se apanha uma borboleta errada será sujeito a uma penalização de 30 segundos.
  • 17. COMO JOGAR
  • 18. Os Números •O Objetivo do jogo é descobrir as regras de divisibilidade, múltiplos e seus padrões usando rapidez e a lógica através instrumentos educacionais , ou seja, saber se um número é múltiplo ou divisível por outro sem efetuar multiplicação. •Verificar os números primos. •Identificar números pares.
  • 19. CONCLUSÃO Um objeto de aprendizagem é qualquer recurso que possa ser reutilizado para dar suporte ao aprendizado. Sua principal idéia é "quebrar" o conteúdo educacional disciplinar em pequenos trechos que podem ser reutilizados em vários ambientes de aprendizagem. Qualquer material eletrônico que provém informações para a construção de conhecimento pode ser considerado um objeto de aprendizagem, seja essa informação em forma de uma imagem, uma página HTM, uma animação ou simulação. RIVED - REDE INTERNACIONAL VIRTUAL DE EDUCAÇÃO
  • 20. LINK http://nautilus.fis.uc.pt/mn/p_index.html

×