0
Complex Environment Evolution        Challenges with Semantic Service Infrastructures- Andrej Eisfeld- Achim P. Karduck- D...
Structure    Background    Semantic Agents    Evaluation    Conclusion                                                 22 ...
Background    Semantic Agents               Use Case   ConclusionSmart Camp      Aim: Reduce energy consumption in camps  ...
Background    Semantic Agents               Use Case   ConclusionProblem I                     Continuing Change     “E-ty...
Background       Semantic Agents               Use Case   ConclusionProblem II    Multiple software systems in service inf...
Background       Semantic Agents               Use Case         ConclusionSemantic Service Approaches                     ...
Background   Semantic Agents               Use Case   ConclusionLinked Data II      JSON-LD is resource orientated      Li...
Background   Semantic Agents               Use Case   ConclusionIdea I : LRG           Ontology     Resource Discovery    ...
Background   Semantic Agents               Use Case   ConclusionIdea II : Ontology Paths     Permitted Ontology     Path (...
Background    Semantic Agents               Use Case   ConclusionSemantic Handler       Semantic Request Handler          ...
Background   Semantic Agents               Use Case   ConclusionAgent Communication     1) Define Goal     2) Traverse LRG...
Background    Semantic Agents               Use Case   ConclusionA Semantic Camp      SCMU and SHCs as      Semantic Agent...
Background       Semantic Agents               Use Case            ConclusionSetting          Smart Camp Ontology         ...
Background       Semantic Agents               Use Case            ConclusionResource Discovery          Smart Camp Ontolo...
Background        Semantic Agents                   Use Case           ConclusionRepresentations{                         ...
Background                  Semantic Agents                    Use Case   ConclusionComposed Representation     {         ...
Background   Semantic Agents               Use Case   ConclusionWhat if ...     ●   Requirements change → new sensors     ...
Background   Semantic Agents               Use Case   ConclusionSummary       Chosen technologies: JSON-LD + OWL       Mod...
Background   Semantic Agents               Use Case   ConclusionOutlook       Implementation       Research Ontology Evolu...
References     ●   M. Lehman. On understanding laws, evolution, and conservation in the large-         program life cycle....
DNS Service Discovery        Different types of resource records           PTR: Defines references to other domains       ...
Complex Environment Evolution
Upcoming SlideShare
Loading in...5
×

Complex Environment Evolution

155

Published on

Presentation hold on DEST 2012

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
155
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Complex Environment Evolution"

  1. 1. Complex Environment Evolution Challenges with Semantic Service Infrastructures- Andrej Eisfeld- Achim P. Karduck- David McMeekin IEEE DEST: 18 - 20 June 2012
  2. 2. Structure Background Semantic Agents Evaluation Conclusion 22 Complex Environment Evolution
  3. 3. Background Semantic Agents Use Case ConclusionSmart Camp Aim: Reduce energy consumption in camps Example: Energy costs: 2.000.000 AUD / year 25% savings potential Main Smart Camp System components: Smart Home Controller (SHC) Smart Camp Management Unit (SCMU) 33 Complex Environment Evolution
  4. 4. Background Semantic Agents Use Case ConclusionProblem I Continuing Change “E-type systems must be continually adapted or they become progressively less satisfactory” Continuing Growth “The functional content of E-type systems must be continually increased to maintain user satisfaction over their lifetime” 44 Complex Environment Evolution
  5. 5. Background Semantic Agents Use Case ConclusionProblem II Multiple software systems in service infrastructure Evolution more difficult due to dependencies 55 Complex Environment Evolution
  6. 6. Background Semantic Agents Use Case ConclusionSemantic Service Approaches Approach Loose Coupling WSDL2.0 + SAWSDL x HTML + SA-REST HTML + hRESTs + MicroWSMO EXPRESS ReLL JSON-LD Comparison of multiple Semantic Service aproaches 66 Complex Environment Evolution
  7. 7. Background Semantic Agents Use Case ConclusionLinked Data II JSON-LD is resource orientated Linked Resources Graph (LRG): 77 Complex Environment Evolution
  8. 8. Background Semantic Agents Use Case ConclusionIdea I : LRG Ontology Resource Discovery Resource Composition Resource Invocation 88 Complex Environment Evolution
  9. 9. Background Semantic Agents Use Case ConclusionIdea II : Ontology Paths Permitted Ontology Path (POP) Not Permitted Ontology Path (NPOP) POP + NPOP → Restrictions for LRG traversal 99 Complex Environment Evolution
  10. 10. Background Semantic Agents Use Case ConclusionSemantic Handler Semantic Request Handler Resorce Discovery + Composition + Invocation Semantic Response Handler Data Discovery + Dynamic Code Reuse 1010 Complex Environment Evolution
  11. 11. Background Semantic Agents Use Case ConclusionAgent Communication 1) Define Goal 2) Traverse LRG 3) Retrieve Response 4) Process Response 1111 Complex Environment Evolution
  12. 12. Background Semantic Agents Use Case ConclusionA Semantic Camp SCMU and SHCs as Semantic Agents Flexibility for Resources location and content Functionality enrichment without recompilation 1212 Complex Environment Evolution
  13. 13. Background Semantic Agents Use Case ConclusionSetting Smart Camp Ontology Linked Resources Graph 1313 Complex Environment Evolution
  14. 14. Background Semantic Agents Use Case ConclusionResource Discovery Smart Camp Ontology Linked Resources Graph 1414 Complex Environment Evolution
  15. 15. Background Semantic Agents Use Case ConclusionRepresentations{ { "@context":{ "@context":{ "onto":"http://www.smartcamp.org/onto" "onto":"http://www.smartcamp.org/onto" "door":"onto#DoorSensor" "motion":"onto#MotionSensor" "value":"onto#sensorValue" "value":"onto#sensorValue" }, }, "@type":"door", "@type":"motion", "value":true "valueZ":false} } 15 15 Complex Environment Evolution
  16. 16. Background Semantic Agents Use Case ConclusionComposed Representation { "@context":{ "motion":"http://www.smartcamp.org/ontology#MotionSensor", "door":"http://www.smartcamp.org/ontology#DoorSensor", "value":"http://www.smartcamp.org/ontology#sensorValue" }, "@type":"http://www.smartcamp.org/ontology#Sensor", "motion":{ "value":false }, "door":{ "value":true } } 1616 Complex Environment Evolution
  17. 17. Background Semantic Agents Use Case ConclusionWhat if ... ● Requirements change → new sensors ● Requirements change → obsolete sensors 1717 Complex Environment Evolution
  18. 18. Background Semantic Agents Use Case ConclusionSummary Chosen technologies: JSON-LD + OWL Model of a Semantic Agent Higher evolvability in evolution scenario Ontology Evolution may reduce assessed evolvability 1818 Complex Environment Evolution
  19. 19. Background Semantic Agents Use Case ConclusionOutlook Implementation Research Ontology Evolution & Versioning Service Discovery in a Smart City 1919 Complex Environment Evolution
  20. 20. References ● M. Lehman. On understanding laws, evolution, and conservation in the large- program life cycle. Journal of Systems and Software, 1:213–221, 1980 ● H. P. Breivold, I. Crnkovic, R. Land, and S. Larsson. Using dependency model to support software architecture evolution. In Automated Software Engineering - Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International Conference on, pages 82–91, 2008. ● P.V.D. Laar and T. Punter. Views on Evolvability of Embedded Systems. Springer, 2010. ● Ora Lassila, Tim Berners-Lee, James A. Hendler. The semantic web. Scientific American, 284(5):34–43, 2001. ● http://www.cs.helsinki.fi/research/roosa/images/serious-logo-final.jpg ● http://applicanttracking.files.wordpress.com/2010/06/evolution.jpg ● http://informatique.umons.ac.be/genlog/images/wordle.jpg ● http://www.johnbendever.com/wp-content/uploads/question.jpg 2121 Complex Environment Evolution
  21. 21. DNS Service Discovery Different types of resource records PTR: Defines references to other domains SRV: Defines a service location TXT: Used to add meta-data ------------------------------------------------------------------ General usage: serviceType PTR serviceInstance serviceInstance SRV serviceLocation TXT serviceMetaData 2222 Complex Environment Evolution
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×