Rio de Janeiro, 04 de Abril de 2011. ESTATÍSTICA: Estatística Descritiva Anderson Guimarães de Pinho
<ul><ul><li>População e amostra </li></ul></ul><ul><ul><li>Técnicas de amostragem </li></ul></ul><ul><ul><li>Descrição dos...
Estatística Descritiva Técnicas de Amostragem Análise Descritiva Informações Contidas nos Dados Inferência Estatística Con...
Estatística Descritiva <ul><li>Definição </li></ul><ul><ul><li>População : é o conjunto de todos os elementos ou resultado...
Estatística Descritiva <ul><li>Exemplo 1: </li></ul><ul><ul><li>Consideremos uma pesquisa para estudar os salários dos 500...
Estatística Descritiva <ul><li>Exemplo 2: </li></ul><ul><ul><li>Queremos estudar a proporção de indivíduos na cidade A que...
Estatística Descritiva <ul><li>Exemplo 3: </li></ul><ul><ul><li>Queremos investigar a duração de vida de um novo tipo de l...
Estatística Descritiva <ul><li>Amostragem </li></ul><ul><ul><li>Objetivo: obter parte das informações e efetuar inferência...
Estatística Descritiva <ul><li>Técnicas de Amostragem </li></ul><ul><ul><li>Alguns tipos ... </li></ul></ul>AMOSTRA ALEATÓ...
Estatística Descritiva <ul><li>Amostra Aleatória Simples </li></ul><ul><ul><li>Definição: uma amostra aleatória simples de...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>De Posição: </li></ul></ul><ul><ul><ul><li>Média <...
Estatística Descritiva <ul><li>Notação </li></ul>
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Média </li></ul></ul><ul><ul><li>EXEMPLO: </li></u...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Mediana </li></ul></ul><ul><ul><ul><li>md = observ...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Quantil </li></ul></ul><ul><ul><ul><li>Estatística...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrai...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrai...
Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Variância </li></ul></ul><ul><ul><ul><li>indica qu...
“ Obrigado” Anderson Guimarães de Pinho “ É mais pela educação que pela instrução que se transformará a humanidade. ”  Ala...
Upcoming SlideShare
Loading in...5
×

Estatística Descritiva

4,960

Published on

Estatística Descritiva

  1. 1. Rio de Janeiro, 04 de Abril de 2011. ESTATÍSTICA: Estatística Descritiva Anderson Guimarães de Pinho
  2. 2. <ul><ul><li>População e amostra </li></ul></ul><ul><ul><li>Técnicas de amostragem </li></ul></ul><ul><ul><li>Descrição dos dados populacionais e amostrais </li></ul></ul><ul><ul><li>Medidas de tendência central e de dispersão </li></ul></ul>Estatística Descritiva
  3. 3. Estatística Descritiva Técnicas de Amostragem Análise Descritiva Informações Contidas nos Dados Inferência Estatística Conclusões sobre as característica da população População Amostra
  4. 4. Estatística Descritiva <ul><li>Definição </li></ul><ul><ul><li>População : é o conjunto de todos os elementos ou resultados sob investigação. </li></ul></ul><ul><ul><li>Amostra : é qualquer subconjunto da população. </li></ul></ul><ul><ul><ul><li>Exemplo no dia a dia: </li></ul></ul></ul><ul><ul><ul><li>Testa-se uma amostra da panela de sopa para ver se está salgada a gosto. </li></ul></ul></ul><ul><ul><ul><li>Testa-se frutas de uma feira para averiguar se a qualidade é boa. </li></ul></ul></ul>
  5. 5. Estatística Descritiva <ul><li>Exemplo 1: </li></ul><ul><ul><li>Consideremos uma pesquisa para estudar os salários dos 500 funcionários da companhia MB. Seleciona-se uma amostra de 36 indivíduos, e anotam-se os seus salários. </li></ul></ul><ul><ul><ul><li>População: 500 salários correspondente aos 500 funcionários </li></ul></ul></ul><ul><ul><ul><li>Amostra: 36 salários </li></ul></ul></ul>
  6. 6. Estatística Descritiva <ul><li>Exemplo 2: </li></ul><ul><ul><li>Queremos estudar a proporção de indivíduos na cidade A que são favoráveis a certo projeto governamental. Uma amostra de 200 pessoas é sorteada, e a opinião de cada uma é registrada como sendo a favor ou contra um determinado projeto. </li></ul></ul><ul><ul><ul><li>População: todos os moradores da cidade </li></ul></ul></ul><ul><ul><ul><li>Amostra: 200 pessoas selecionadas </li></ul></ul></ul>
  7. 7. Estatística Descritiva <ul><li>Exemplo 3: </li></ul><ul><ul><li>Queremos investigar a duração de vida de um novo tipo de lâmpada, pois acreditamos que ela tenha uma duração maior do que as fabricadas atualmente. Então, 100 lâmpadas do novo tipo são deixadas acesas até queimarem. A duração em horas de cada lâmpada é registrada. Aqui, a variável é a duração em horas de cada lâmpada. </li></ul></ul><ul><ul><ul><li>População: todas as lâmpadas fabricadas ou que venham a ser fabricadas por esta empresa, pelo mesmo processo. </li></ul></ul></ul><ul><ul><ul><li>Amostra: 100 lâmpadas selecionada. </li></ul></ul></ul>
  8. 8. Estatística Descritiva <ul><li>Amostragem </li></ul><ul><ul><li>Objetivo: obter parte das informações e efetuar inferências. </li></ul></ul><ul><ul><li>Vantagens: custo, rapidez, exatidão, amplitude de informações. </li></ul></ul>
  9. 9. Estatística Descritiva <ul><li>Técnicas de Amostragem </li></ul><ul><ul><li>Alguns tipos ... </li></ul></ul>AMOSTRA ALEATÓRIA SIMPLES SISTEMÁTICA ESTRATIFICADA ALEATÓRIA ESTRATIFICADA SISTEMÁTICA CONGLOMERADOS ALEATÓRIA
  10. 10. Estatística Descritiva <ul><li>Amostra Aleatória Simples </li></ul><ul><ul><li>Definição: uma amostra aleatória simples de tamanho n de uma variável aleatória X, com dada distribuição, é o conjunto de n variáveis aleatórias independentes X 1, X 2 , ..., X n, cada uma com a mesma distribuição de X. </li></ul></ul><ul><ul><li>Exemplo: Vamos retirar uma AAS de 5 alturas (em cm) de uma população de mulheres cujas alturas X seguem a distribuição N(167;25). </li></ul></ul><ul><ul><ul><li>Usando-se, por exemplo, o gerador de números aleatórios do Excel, fornecendo os parâmetros  e  , além do tamanho da amostra n=5, obtemos os valores: </li></ul></ul></ul>
  11. 11. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>De Posição: </li></ul></ul><ul><ul><ul><li>Média </li></ul></ul></ul><ul><ul><ul><li>Mediana </li></ul></ul></ul><ul><ul><ul><li>Mínimo </li></ul></ul></ul><ul><ul><ul><li>Máximo </li></ul></ul></ul><ul><ul><ul><li>Quantil </li></ul></ul></ul><ul><ul><ul><li>Quartis </li></ul></ul></ul><ul><ul><li>De Dispersão: </li></ul></ul><ul><ul><ul><li>Amplitude Amostral </li></ul></ul></ul><ul><ul><ul><li>Intervalo Interquartil </li></ul></ul></ul><ul><ul><ul><li>Variância </li></ul></ul></ul><ul><ul><ul><li>Desvio Padrão </li></ul></ul></ul>
  12. 12. Estatística Descritiva <ul><li>Notação </li></ul>
  13. 13. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Média </li></ul></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrais : 4, 5, 4, 6, 5, 8, 4 </li></ul></ul>
  14. 14. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Mediana </li></ul></ul><ul><ul><ul><li>md = observação na posição central dos dados </li></ul></ul></ul><ul><ul><li>Máximo: a maior observação </li></ul></ul><ul><ul><ul><li>x (n) = max(X 1 , X 2 , X 3, ..., X n ) </li></ul></ul></ul><ul><ul><li>Mínimo: a menor observação </li></ul></ul><ul><ul><ul><li>x (1) = min(X 1 , X 2 , X 3, ..., X n ) </li></ul></ul></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrais : 4, 5, 4, 6, 5, 8, 4 </li></ul></ul><ul><ul><ul><li>md = 5 </li></ul></ul></ul><ul><ul><ul><li>x (n) = 8 </li></ul></ul></ul><ul><ul><ul><li>x (1) = 4 </li></ul></ul></ul>
  15. 15. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Quantil </li></ul></ul><ul><ul><ul><li>Estatística que corresponde aos valores que dividem um conjunto de dados ordenados em porções. </li></ul></ul></ul><ul><ul><ul><li>Exemplo: q(0.8) </li></ul></ul></ul><ul><ul><ul><ul><li>Quantil que divide 80% dos menores valores de uma variável em estudo, dos 20% maiores valores. </li></ul></ul></ul></ul><ul><ul><ul><li>Por definição, q(p) seré válido para p entre 0 e 1. </li></ul></ul></ul><ul><ul><li>Quartis </li></ul></ul><ul><ul><ul><li>q 1 , q 2 , q 3 , compreendem aos quantis, respectivamente, q (0.25) , q (0.50) , q (0.75) . </li></ul></ul></ul><ul><ul><li>OBS.: Percebam que q2=md=q(0.50), ou ainda, Q2=Md=Q(0.50). </li></ul></ul>
  16. 16. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrais : 4, 5, 4, 6, 5, 8, 4 </li></ul></ul><ul><ul><li>Dados amostrais ordenados: 4, 4, 4, 5, 5, 6, 8 </li></ul></ul><ul><ul><ul><li>q (0.14) = 4 </li></ul></ul></ul><ul><ul><ul><li>q (0.50) = 5 </li></ul></ul></ul><ul><ul><ul><li>q (0.86) = 6 </li></ul></ul></ul><ul><ul><ul><li>q 1 = 4 </li></ul></ul></ul><ul><ul><ul><li>q 2 = 5 </li></ul></ul></ul><ul><ul><ul><li>q 3 = 6 </li></ul></ul></ul>
  17. 17. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>EXEMPLO: </li></ul></ul><ul><ul><li>Dados amostrais : 4, 5, 4, 6, 5, 8, 4 </li></ul></ul><ul><ul><li>Intervalo Interquartil </li></ul></ul><ul><ul><ul><li>d q = q 3 -q 1 = 6-4 = 2 </li></ul></ul></ul><ul><ul><li>Amplitude Amostral </li></ul></ul><ul><ul><ul><li>x (n) -x (1) = 8-4 = 4 </li></ul></ul></ul>
  18. 18. Estatística Descritiva <ul><li>Medidas de Posição </li></ul><ul><ul><li>Variância </li></ul></ul><ul><ul><ul><li>indica quão longe em geral os seus valores se encontram do valor esperado. </li></ul></ul></ul><ul><ul><li>Desvio Padrão </li></ul></ul><ul><ul><ul><li>Indica uma dispersão média dos valores de uma variável, ao redor do valor esperado. </li></ul></ul></ul><ul><ul><ul><li>Pearson, Karl (1894). &quot;On the dissection of asymmetrical frequency curves&quot;. Phil. Trans. Roy. Soc. London, Series A, 185, 719-810 </li></ul></ul></ul>
  19. 19. “ Obrigado” Anderson Guimarães de Pinho “ É mais pela educação que pela instrução que se transformará a humanidade. ” Alan Kardec

×