Your SlideShare is downloading. ×

High Performance Cloud Computing

340
views

Published on

Slides from the High Performance Cloud Computing tutorial at Supercomputing 2011 in Seattle. Additional materials available from: cloudsupercomputing.net.

Slides from the High Performance Cloud Computing tutorial at Supercomputing 2011 in Seattle. Additional materials available from: cloudsupercomputing.net.

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
340
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Another example, also a hedge fund. Lot more spiky since they do High Frequency Trading\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Transcript

    • 1. HighPerformance Cloud ComputingSupercomputing 2011
    • 2. Hello
    • 3. Thank you
    • 4. HPC withAWS
    • 5. Understand theservices, tools andpatterns forbuildinghigh performancesystems in the
    • 6. AGENDA SC11 - Monday 14th November, 2011Cloud ConceptsBuilding BlocksTechnica l & Scientific ComputingL oosely Coupled SystemsHands-on Session #1Parallel ComputationHands-on Session #2Wrap up
    • 7. There Will Be Code
    • 8. CloudConceptsA prelude
    • 9. Consumer Seller business business
    • 10. Decades of experience Operations, management and scale
    • 11. Programmatic access
    • 12. Unexpected innovation
    • 13. Blinding flash of the obvious
    • 14. Five years young
    • 15. Infrastructure services
    • 16. Compute Storage Placeholder ServicesDatabases & Support
    • 17. Idea Results
    • 18. Idea Results Heavy lifting
    • 19. ScaleRedundancy Orchestrati on 70% Idea Results Heavy liftingCapacity Management Procurement
    • 20. 30%Idea Results Infrastructure
    • 21. Idea Results AWS
    • 22. Idea Results AWS
    • 23. Five things Iwish I’d knownwhen Iwas gettingstarted.
    • 24. 1: Signing up
    • 25. On the web
    • 26. Free tier For new customers:aws.amazon.com/free
    • 27. 750 hours of compute10Gb network attached storage5Gb object storage750 hours of computeKey/value store, notifications,messaging
    • 28. 2: Interacting
    • 29. HTTP, REST, SOAP
    • 30. API driven HTTP, REST, SOAP
    • 31. CLI
    • 32. ec2-run-instances
    • 33. ec2-terminate-instances
    • 34. Java, Python, Ruby, .Net, PHP, iOS and Android
    • 35. SDKJava, Python, Ruby, .Net, PHP, iOS and Android
    • 36. Management console
    • 37. Linux
    • 38. Certificate-based root access
    • 39. mza$ ssh -i web/us-east/aws-web.pemroot@ec2-204-236-247-169.compute-1.amazonaws.comLast login: Wed Jun 22 11:15:20 2011 from 82.26.6.99 __| __|_ ) CentOS _| ( / v5.4 ___|___|___| HVMx64 Welcome to an EC2 Public Image :-)[root@ip-10-17-135-244 ~]#
    • 40. Windows
    • 41. Administrator access
    • 42. 3: Storage options
    • 43. Ephemeral storage
    • 44. Included with compute Ephemeral storage Lost at Not backedterminatio up n
    • 45. When it’s gone, it’s gone
    • 46. Hands-on
    • 47. Elastic Block StoreHands-on
    • 48. Network Mount as attached volumeElastic Block StoreSnapshot Persistent
    • 49. Hands-on
    • 50. S3Hands-on
    • 51. Highly Highlydurable available S3 Tolerant to two simultaneo
    • 52. durability
    • 53. 99.999999999% durability
    • 54. Objects in S3Billions of objects 556B 600 450 300 150 0 Q4 2006 Q4 2007 Q4 2008 Q4 2009 Q4 2010 Q3 2011
    • 55. 370,000 peaktransactions per second
    • 56. Payment options
    • 57. Pay as you go
    • 58. Gb/month
    • 59. ECU/hour
    • 60. No minimum
    • 61. No subscriptions
    • 62. Pricing tiers
    • 63. Consolidated billing
    • 64. Options
    • 65. On-demand
    • 66. Reservedcapacity
    • 67. Hands-on
    • 68. Spot MarketHands-on
    • 69. Bandwidth
    • 70. Free inbound
    • 71. Import/Export
    • 72. Reducedoutbound
    • 73. Pricing calculator
    • 74. aws.amazon.com/calculator
    • 75. 5. Availability Zones
    • 76. us-east-1 us-west-1 us-west-2us-gov-west-1 eu-west-1ap-southeast-1ap-northeast-1
    • 77. eu-west-1aeu-west-1b eu-west-1c
    • 78. BuildingblocksservicesFoundational
    • 79. Compute
    • 80. Elastic Compute Cloud
    • 81. EC2Elastic Compute Cloud
    • 82. Hands-on
    • 83. Elastic compute infrastructureHands-on
    • 84. ECU:Equivalent to 1.0 - 1.2 GHz 2007 Opteron or 2007 Xeon
    • 85. ECU:EC2 Compute UnitEquivalent to 1.0 - 1.2 GHz 2007 Opteron or 2007 Xeon
    • 86. Instance types
    • 87. ClustMicro er$0.02 $2.10
    • 88. Standard (m1) 1 ECU. 1.7 Gb memory. 160 Gb ephemeral storage.
    • 89. High memory (m2)Up to 26 ECU. 8 cores. 68.4 Gb memory. 1.69 Tb ephemeral storage.
    • 90. High CPU (c1)Up to 20 ECU. 8 cores. 7 Gb memory. 1.69 Tb ephemeral storage.
    • 91. Higherperformance
    • 92. MPI workloads
    • 93. Bandwidth intensive
    • 94. Hands-on
    • 95. CC:Cluster ComputeHands-on
    • 96. 2 x Intel Xeon 557023 Gb memory 1.7 Tb disk 33.5 ECUs
    • 97. HVM
    • 98. 10 gig E
    • 99. Placement groups
    • 100. Full bisectional bandwidth
    • 101. Linpack
    • 102. November 2010Cores 7040 R max 41.82 R peak 82.51
    • 103. November 2010 231
    • 104. June 2011451
    • 105. November 2011
    • 106. November 2011 42
    • 107. WIEN2K Parallel Performance H size 56,000 (25GB) Runtime (16x8 processors) Local (Infiniband) 3h:48 Cloud (10Gbps) 1h:30 ($40) 1200 atom unit cell; SCALAPACK+MPI diagonalization, matrix size 50k-100kCredit: K. Jorissen, F. D. Villa, and J. J. Rehr (U. Washington)
    • 108. GPU computation
    • 109. Hands-on
    • 110. CG:Cluster Compute with gpGPUHands-on
    • 111. 2 x NVIDIA M2050
    • 112. 2 x Intel Xeon 5570 23 Gb memory 1.7 Tb disk 2 x NVIDIA M2050
    • 113. Flexible cluster control
    • 114. API
    • 115. Hands-on
    • 116. SGEHands-on
    • 117. LSF
    • 118. Condor
    • 119. Rocks+
    • 120. Slurm
    • 121. Included with all instances and block storage
    • 122. CloudWatchIncluded with all instances and block storage
    • 123. Custom metrics
    • 124. Storage
    • 125. Simple Storage Service
    • 126. S3Simple Storage Service
    • 127. Files in directories
    • 128. Objects in buckets
    • 129. http://s3.amazonaws.com/bucketname/objectid http://bucketname.s3.amazonaws.com/objectid
    • 130. https://s3.amazonaws.com/bucketname/objectidhttps://bucketname.s3.amazonaws.com/objectid
    • 131. 5Tb
    • 132. Large object support 5Tb
    • 133. Parallel uploads
    • 134. Import/Export
    • 135. Managedencryption
    • 136. 99.99% durability
    • 137. Reducedredundancy storage99.99% durability
    • 138. Elastic Block Store
    • 139. EBSElastic Block Store
    • 140. Flexible, off-instance block storage
    • 141. 1Gb to 1Tb
    • 142. Scalable1Gb to 1Tb
    • 143. Exposed as a device
    • 144. Attached to arunning instance Exposed as a device
    • 145. Snapshot to S3
    • 146. Hands-on
    • 147. Public DatasetsHands-on
    • 148. Databases
    • 149. Databases on EC2
    • 150. Oracle and MySQL
    • 151. Managed. High availability. Read replicas.
    • 152. RelationalDatabase ServiceManaged. High availability. Read replicas.
    • 153. High scale. Highly available. Key/attribute store
    • 154. SimpleDBHigh scale. Highly available. Key/attribute store
    • 155. No server toprovision or manage.
    • 156. Perfect formetadata
    • 157. Messaging &notifications
    • 158. Hands-on
    • 159. Simple Queue ServiceHands-on
    • 160. Hands-on
    • 161. Simple Notification ServiceHands-on
    • 162. Technical &ScientificComputing
    • 163. Elasticity
    • 164. Research is bursty
    • 165. Traditionalcapacity is static
    • 166. Capacity Predicted capacity Estimated demand Time
    • 167. Capacity Infrastructure Infrastructure Investment Estimated demand Barrier to entry Time
    • 168. Capacity Infrastructure Real demand Time
    • 169. Capacity Elastic capacity Real demand Time
    • 170. Rapid response
    • 171. Removingconstraints
    • 172. Research isconstrained
    • 173. Constrained by static infrastructure
    • 174. Unconstrained
    • 175. Larger systems,more molecules, more stars, higher order species...
    • 176. Unconstrained by scale
    • 177. 30,000 cores
    • 178. Unconstrained by timeUpcoming conference, grant submissions, impatience, exploratory “spike”
    • 179. 1 core for100 hours
    • 180. 100 cores for 1 hour
    • 181. 10k cores in45 minutes
    • 182. Unconstrained by cost
    • 183. Optimising for price
    • 184. On-demand
    • 185. Reservedcapacity
    • 186. 1&year&term& Usage Fee One-time Fee Total SavingsOption 1 $1493 - $1493 -On-Demand onlyOption 2 $1008 $227 $1234 ~20%On-Demand +ReservedOption 3 $528 $455 $983 ~35%All reserved Total&Cost&for&1&Year.term&of&2&applica4on&servers,&steady&state&usage&
    • 187. 3&years&term& Usage Fee One-time Fee Total SavingsOption 1 $4479 - $4479 -On-Demand onlyOption 2 $3024 $350 $3374 ~30%On-Demand +ReservedOption 3 $1584 $700 $2284 ~50%All reserved Total&Cost&for&3&Year.term&of&2&applica4on&servers,&steady&state&usage&
    • 188. 450" On#Demand# 1*year#RI# 3*year#RI# 400" 350" 300" 250" 200" 2 150" 100" 50" 1 0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24"on-demand vs. reserved instances
    • 189. Spot InstancesHands-on
    • 190. Placeholder
    • 191. On-demand + Reserved + Spot
    • 192. “20th Centuryarchitectures”
    • 193. Driven by analysis metrics
    • 194. Increasing usability
    • 195. AmazonMachine Image
    • 196. Community AMIs
    • 197. http://www.cloudbiolinux.com/
    • 198. http://usegalaxy.org/cloud
    • 199. Reproducibility
    • 200. Detailedlogging For S3 access
    • 201. Application loggingArchive to S3 for durability
    • 202. Automation
    • 203. Application tierCode Configuration
    • 204. Application tierCode Configuration
    • 205. Application tier Code Configuration Service tier Integration Operating system settings Services +Launch configuration configuration
    • 206. Application tier Code Configuration Service tier Integration Operating system settings Services +Launch configuration configuration
    • 207. Application tier Code Configuration Service tier Integration Operating system settings Services +Launch configuration configuration Infrastructure tier AMIs Architecture Multi-AZScaling rules Security groups Middleware
    • 208. Value bakedinto each tier
    • 209. Service tierConfiguration & optimization Technology choices
    • 210. Infrastructure tierArchitecture. Configuration.
    • 211. Automationmaximises this value
    • 212. CloudFormationHands-on
    • 213. Template
    • 214. TemplateDefines a full infrastructure stack
    • 215. Auto-scaling RDS EC2 SNS SimpleDB EBS SQS ResourcesElastic Beanstalk CloudWatch Security groups Tags
    • 216. Template CloudFormation Provisioned resources
    • 217. Complete definitionAtomic, idempotent provisioning.
    • 218. JSONDeclarative language
    • 219. { "AWSTemplateFormatVersion" : "2010-09-09", "Description" : "Create an EC2 instances", "Parameters" : { "KeyName" : { "Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instance", "Type" : "String" } }, "Mappings" : { "RegionMap" : { "us-east-1" : { "AMI" : "ami-76f0061f" }, "us-west-1" : { "AMI" : "ami-655a0a20" }, "eu-west-1" : { "AMI" : "ami-7fd4e10b" }, "ap-southeast-1" : { "AMI" : "ami-72621c20" }, "ap-northeast-1" : { "AMI" : "ami-8e08a38f" } } }, "Resources" : { "Ec2Instance" : { "Type" : "AWS::EC2::Instance", "Properties" : { "KeyName" : { "Ref" : "KeyName" }, "ImageId" : { "Fn::FindInMap" : [ "RegionMap", { "Ref" : "AWS::Region" }, "AMI" ]}, "UserData" : { "Fn::Base64" : "80" } } } }, "Outputs" : { "InstanceId" : { "Description" : "InstanceId of the newly created EC2 instance", "Value" : { "Ref" : "Ec2Instance" } }, "AZ" : { "Description" : "Availability Zone of the newly created EC2 instance", "Value" : { "Fn::GetAtt" : [ "Ec2Instance", "AvailabilityZone" ] } }, "PublicIP" : { "Description" : "Public IP address of the newly created EC2 instance", "Value" : { "Fn::GetAtt" : [ "Ec2Instance", "PublicIp" ] } } }}
    • 220. { "AWSTemplateFormatVersion" : "2010-09-09", "Description" : "Create an EC2 instances", Headers Parameters "Parameters" : { "KeyName" : { "Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instance", "Type" : "String" } }, "Mappings" : { "RegionMap" : { "us-east-1" : { "AMI" : "ami-76f0061f" }, "us-west-1" : { Mappings "AMI" : "ami-655a0a20" }, "eu-west-1" : { "AMI" : "ami-7fd4e10b" }, "ap-southeast-1" : { "AMI" : "ami-72621c20" }, "ap-northeast-1" : { "AMI" : "ami-8e08a38f" } } }, "Resources" : { "Ec2Instance" : { "Type" : "AWS::EC2::Instance", Resources "Properties" : { "KeyName" : { "Ref" : "KeyName" }, "ImageId" : { "Fn::FindInMap" : [ "RegionMap", { "Ref" : "AWS::Region" }, "AMI" ]}, "UserData" : { "Fn::Base64" : "80" } } } }, "Outputs" : { "InstanceId" : { "Description" : "InstanceId of the newly created EC2 instance", "Value" : { "Ref" : "Ec2Instance" } }, Outputs "AZ" : { "Description" : "Availability Zone of the newly created EC2 instance", "Value" : { "Fn::GetAtt" : [ "Ec2Instance", "AvailabilityZone" ] } }, "PublicIP" : { "Description" : "Public IP address of the newly created EC2 instance", "Value" : { "Fn::GetAtt" : [ "Ec2Instance", "PublicIp" ] } } }}
    • 221. BootstrapHands-on
    • 222. Chef & Puppet
    • 223. Hands-on
    • 224. Elastic MapReduceHands-on
    • 225. Hadoop for dataintensive analytics
    • 226. Painful at scale
    • 227. S3Input data
    • 228. S3 Input dataCode Elastic MapReduce
    • 229. S3 Input dataCode Elastic Name MapReduce node
    • 230. S3 Input dataCode Elastic Name MapReduce node Elastic cluster
    • 231. S3 Input dataCode Elastic Name MapReduce node HDFS Elastic cluster
    • 232. S3 Input dataCode Elastic Name MapReduce node Queries HDFS + BI Via JDBC, Pig, Hive Elastic cluster
    • 233. S3 Input dataCode Elastic Name Output MapReduce node S3 + SimpleDB Queries HDFS + BI Via JDBC, Pig, Hive Elastic cluster
    • 234. S3 Input data Elastic OutputMapReduce S3 + SimpleDB
    • 235. Hands-on
    • 236. SpotHands-on
    • 237. Enablingcollaboration
    • 238. Data
    • 239. Lots of data
    • 240. Lots of data,lots of uses
    • 241. Lots of data,lots of uses,lots of users
    • 242. Lots of data, lots of uses, lots of users,lots of locations
    • 243. Forcemultipliers
    • 244. Maximise value of data
    • 245. Data close to compute
    • 246. Import/Export
    • 247. Direct Connect
    • 248. AMIs, Snapshots,CloudFormationHands-on
    • 249. Public DatasetsHands-on
    • 250. Ensuringsecurity
    • 251. Sharedresponsibility
    • 252. Requirementbased access
    • 253. Certification
    • 254. ISO 27001
    • 255. SAS70 Type II
    • 256. ServiceOrganisationControls (SOC 1) SSAE 16 and ISAE 3702
    • 257. FISMA Moderate
    • 258. HIPAA
    • 259. ITARAWS GovCloud (US)
    • 260. Data access control Detailed logging
    • 261. Data stays local
    • 262. Identity &Access ControlHands-on
    • 263. Account
    • 264. AccountDBA Developer Sys admin Finance Roles
    • 265. AccountDBA Developer Sys admin Finance Roles Sally Robert Users Chris
    • 266. Security credentials Multifactor authenticationManagement console access Data read/write access API level access
    • 267. AccountDBA Developer Sys admin Finance Roles Sally Robert Users Chris
    • 268. Networking controls
    • 269. Virtual Private Cloud
    • 270. Virtual network topology
    • 271. IP address rangePublic and private subnetsRouting tablesNetwork gateways
    • 272. Network access control
    • 273. Inbound ACLsOutbound ACLsIPsec VPN
    • 274. Public subnetPublic facing website
    • 275. Public subnet Network ACLs + security groups Private subnetMulti-tier applications
    • 276. Public subnet Private subnet IPsec VPN On-premiseExtend your data centre
    • 277. Private subnet IPsec VPN On-premiseExtend your data centre
    • 278. aws.amazon.com/security
    • 279. End of Part One
    • 280. cloudsupercomputing.net/ tutorial
    • 281. aws.amazon.com/ awscredits
    • 282. Part Two
    • 283. Hands-on:Loosely coupledsystems
    • 284. High scale,loosely coupled system
    • 285. Embarrassingly parallel
    • 286. Decoupled, batchworkflows
    • 287. TasksInstances
    • 288. TasksQueueInstances
    • 289. TasksQueueInstances
    • 290. Tasks Queue Instances Increaseinstance size
    • 291. Tasks Queue Instances Increaseinstance size
    • 292. Tasks Queue Instances Increaseinstance count
    • 293. TasksQueueInstancesResultsStore
    • 294. TasksQueueOn-premiseInstancesResultsStore
    • 295. TasksQueueOn-premiseInstancesResultsStore
    • 296. TasksQueueOn-premiseInstancesResultsStore
    • 297. Batch processingMonitoring. Auto-scaling. Queuing. Spot. Automation.
    • 298. Configure
    • 299. 150
    • 300. Autoscaling. Automation.Don’t forget to shut down your instances!
    • 301. Hadoop with Elastic MapReduceNative. Streaming interface. Hive. Spot with EMR.
    • 302. Advanced EMR with MyrnaBioinformatics tools and large datasets. Thanks to Ben Langmead.
    • 303. $100
    • 304. CredentialsAccount -> Security CredentialsAccess key, secret key, account number
    • 305. AWS staff
    • 306. cloudsupercomputing.net/ tutorial
    • 307. Hands-on:ParallelComputation
    • 308. Tightly coupled systems
    • 309. 10 gig E
    • 310. 64 core parallel clusterCC1. Custom AMI. EBS. Monitoring. MIT StarCluster. CloudFormation.
    • 311. Multi-GPUCG1. CUDA 4. Compile & execute. Benchmark against CPU.
    • 312. OpenFOAMComputational Fluid Dynamics with CC1 on EC2.
    • 313. cloudsupercomputing.net/ tutorial
    • 314. AGENDA SC11 - Monday 14th November, 2011Cloud ConceptsBuilding BlocksTechnica l & Scientific ComputingL oosely coupled systemsHands-on Session #1Parallel computationHands-on Session #2Wrap up, drinks
    • 315. Understand theservices, tools andpatterns forbuildinghigh performancesystems in the
    • 316. YOU ARE CORDIALLY INVITED TO THEAmazon Web Services S C 11 B A S H NETWORKING, DRINKS and GOODIES BOOTH #6202
    • 317. aws.amazon.com/about-aws/sc11
    • 318. Thank you!
    • 319. Questions & comments:matthew@amazon.co m @mza on Twitter