DPP - Optimization potentials by Laser based manufacturing

2,413 views

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,413
On SlideShare
0
From Embeds
0
Number of Embeds
351
Actions
Shares
0
Downloads
109
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

DPP - Optimization potentials by Laser based manufacturing

  1. 1. © Fraunhofer ILTDPP - Optimization potentials by Laserbased manufacturingSimon Merkt Altair Conference 2013
  2. 2. © Fraunhofer ILTAgendaIntroduction und MotivationTopology Optimization and Selective Laser Melting (SLM)New needsConclusion and Outlook
  3. 3. © Fraunhofer ILTDigital Photonic Production –“From Bits to Photons to Atoms”Unique properties of light … highest energy density highest speed shortest interaction (precision) mass-less, force-less best controllability (CAD to product)
  4. 4. © Fraunhofer ILTDigital Photonic Production – Basic PrinciplesCuttingAblation AM Polishing AnalyticsWelding Drilling Glass drillingLaser
  5. 5. © Fraunhofer ILTAdditive Manufacturing – Selective Laser Meltingmetal powderlowering the platformmelting ofthe powderapplication ofpowder layermetal part madeof serial material3D-CAD modelsubdivided into layers
  6. 6. © Fraunhofer ILTSelective Laser Melting – ExamplesBlankholderside panelPulleyChassis componentKinematics componentBlankholderBlankholderHolder gas-filledabsorberClosure clampChassis componentDamper intakeLuggage rack holderKinematicscomponent seatadjustmentHKL hingeBrake line holderHose holderHeat protection blanksteering gearSource: N. Skrynecki, Kundenorientierte Optimierung des generativen Strahlschmelzprozesses, 2010
  7. 7. © Fraunhofer ILTTechnology potential of SLMProduct complexityConventionalmanufacturingLot sizeDigitalPhotonicProductionConventionalmanufacturingInnovative business modelsIndividualisation for free Individualisation for freeComplexity for freeInnovative productsPiece Cost Piece costDigitalPhotonicProduction
  8. 8. © Fraunhofer ILTAgendaIntroduction und MotivationTopology Optimization and Selective Laser Melting (SLM)New needsConclusion and Outlook
  9. 9. © Fraunhofer ILTTopology optimization of an upright (1)ConventionaldesignTopologyoptimizationdummyFEM modelTopologyoptimizationresultFinal design
  10. 10. © Fraunhofer ILT Stub axle for Formula Student Team Running Snails (220 x 160 mm) Material: AlMgSc (Scalmalloy® EADS trademark) Dimension: app. 220 mm x 160 mm Weight: app. 400g2,5 cmLaser power: PL = 200 W PL= 500 WFocus diameter: ds = 200 µm ds= 200 µmScanning velocity: vscan = 500 mm/s vscan = 1250 mm/sTheoretical build-up rate: V = 5 mm³/s V = 12,5 mm³/sx 2,5Topology optimization of an upright (2)
  11. 11. © Fraunhofer ILTSLM-manufactured upright First AlMgSc (Scalmalloy®) part manufactured by HP-SLM Weight saving: approx. 20 %
  12. 12. © Fraunhofer ILTUpright comparisonEvaluation criteria 2011 2012Manufacturing process High Speed Cutting Selective Laser MeltingOptimization technique Iterative design with FEM-analysisTopology optimization withSIMPMaterial AlMgCuZn15/F52 AlMgScZrTensile strengh (Rm) ~520 MPa ~500 MPaFinal weight 0.502 kg (100%) 0.420 kg (83,7%)Performance Max. displacement:0.19 mmMax. Stress:184 MPaMax. displacement:0.14 mmMax. Stress:124 MPa
  13. 13. © Fraunhofer ILTBionic upright for RWTH Formula Student Team Material: AlSi10Mg Weight saving: approx. 30 %
  14. 14. © Fraunhofer ILTAgendaIntroduction und MotivationTopology Optimization and Selective Laser Melting (SLM)New needsConclusion and Outlook
  15. 15. © Fraunhofer ILT Topology Optimization0,37 kg46% CO2 Lattice structures0,31 kg37% CO2 Classic Design0,8 kg100% CO2Source: Loughborough University, Econolyst Ltd.Topology Optimization vs. Lattice structures design
  16. 16. © Fraunhofer ILTNew needs for current optimization software Mesh dependancy  minimum feature sizes restricted SLM process restrictions SLM specific mechanical properties Data and format handling
  17. 17. © Fraunhofer ILT 338 elements 13 min 13 sMesh dependency in topology optimization 21.000 elements 41 min 47 s 2.100.000 elements Ca. 48 h
  18. 18. © Fraunhofer ILTProcess restriction: Max. Overhang Objective: Minimum build heigth Material: AlSi10Mg 400 support structures
  19. 19. © Fraunhofer ILTVideo: Compression test of f2ccz-type structure
  20. 20. © Fraunhofer ILTAgendaIntroduction und MotivationTopology Optimization and Selective Laser Melting (SLM)New needsConclusion and Outlook
  21. 21. © Fraunhofer ILTEvaluation criteria AM DesignguidelinesLattice structuresdesignTopologyoptimizationFunctionaloptimization potentialLow Medium HighResulting design Final design Final design Conceptual designSimulation effort - Medium HighAutomation Low Medium HighTraceability orintuitivityHigh Low to Medium LowDesign verification Empirical formula Little empiricalformula availableFEM-basedDesign approach comparisonConclusion: Combination of all three approaches into one software tool
  22. 22. © Fraunhofer ILTSLM-specific design toolForceCelluar design spaceThermically optimizedintersection for forcetransmissionSolid shellPowder outletyx
  23. 23. © Fraunhofer ILTNew designs – Helicopter partMaterial: 1.4404 (316L)Fcc lattice structureWeigth reduction: 50%
  24. 24. © Fraunhofer ILTThank you!Simon.Merkt@ilt.fraunhofer.de

×