Optimization process for correlation of experimental and numerical modal analysis
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
908
On Slideshare
687
From Embeds
221
Number of Embeds
4

Actions

Shares
Downloads
8
Comments
0
Likes
0

Embeds 221

http://www.altairhtc.com 152
http://www.altairuniversity.com 45
http://altairatc.com 17
http://www.altairatc.com 7

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Optimization process for correlation of experimental andnumerical modal analysisEuropean HyperWorks Technology Conference EHTC 2011November 8th – 9th, 2011, Bonn, GermanyDr.-Ing. Martin H. Müller-Bechtel, Dipl.-Ing. Simon Tschirpke,TECOSIM Technische Simulation GmbH
  • 2. TECOSIM TECOSIM: Facts & Figures  Foundation: 1992 Solutions  Business Area: TECOSIM is Europe’s largest, independent service provider in Computer Aided Engineering (CAE) – Introduction Perspectives the computer-based development and optimization Problem Definition of components, structures and products Analysis  Markets: Original Equipment Manufacturers (OEMs) Discussions and suppliers in following industries Conclusions - automotive - aerospace - chemical - energy - railway - medical …  Vision: Global Leader in Computer Aided Engineering Turn over (Mio. €) Employees 30 28 400 25 22 400 20 300 20 300 240 Forecast 15 12 Forecast 7,7 8,5 200 150 10 6,8 80 90 100 65 5 0 0 2000 2002 2004 2006 2008 2010 2011 2000 2002 2004 2006 2008 2010 2011
  • 3. TECOSIM Problem Definition  Aim: verification of NVH simulation models Solutions  Essential for virtual vehicle development Introduction Perspectives  Complex dependencies to wide range of parameters Problem Definition Analysis Discussions  Method: Usage of optimization for parameter identification Conclusions  Better correlation in less time  Correlation should consider frequency and mode shape:  Relative frequency of simulation mode compared to test  MAC (modal assurance criterion) value for comparison of mode shapes MACi, j       2  ai  b j with ai shape vector of test mode i     ai  ai   b j  b j bj shape vector of sim mode j 4/22
  • 4. TECOSIM Problem Definition  Typical NVH models: coupled structures Solutions  Full vehicle: Introduction modes of suspension, engine Perspectives Problem Definition  Trimmed body: Analysis coupled masses like cooler, battery, or mass damper Discussions  Body in white: Conclusions with elastically connected subframes Full vehicle mode Subframe mode ML BiW with subframe mode 2 5/22
  • 5. TECOSIM Problem Definition  Typical parameters to identify: Solutions  Coupling element stiffness (bushings, engine mount, …) Introduction Perspectives  Joining technique: modeling method dependent properties: Problem Definition glue material stiffness, weld line thickness Analysis  Properties for not exactly known materials like: Discussions fiber reinforced plastics Conclusions  …  Distribution of masses of hang on parts Structural glue Laser weld Weld line 6/22
  • 6. TECOSIM Analysis  Example model: rear subframe out of TEC|BENCH™ process Solutions Introduction Perspectives Problem Definition Analysis Discussions Conclusions Hardware Purchasing NVH testing Scanning rear subframe Geometry data preparation FE modeling FE simulation 7/22
  • 7. TECOSIM Analysis  Example model: rear subframe out of TEC|BENCH™ process Solutions  Initial correlation status: Introduction Perspectives Test 1 2 3 4 5 Problem Definition frequency 72.00 102.06 173.97 181.34 213.69 Analysis correlation status 3 3 0 0 2 Discussions MAC value 0.99 0.99 0.30 0.38 0.85 rel. Frequency 97% 103% 1% 141% 86% Conclusions sim 7 70.05 3 0.994 0.000 0.001 0.016 0.097 8 105.36 3 0.000 0.993 0.288 0.171 0.012 9 139.63 0 0.044 0.000 0.000 0.013 0.673 10 140.09 0 0.267 0.001 0.008 0.006 0.008 11 184.02 2 0.001 0.008 0.011 0.011 0.855  Nearly perfect match for 1st and 2nd mode (MAC > 0.99)  Reduced frequency for 5th mode (mass damper effect)  Parameters to identify:  Bushing stiffness  Distribution of masses inside rubber bushings 8/22
  • 8. TECOSIM Analysis  Example model: rear subframe out of TEC|BENCH™ process Solutions  Criterion for correlation considers frequency AND mode shape: Introduction  MAC value for comparison of modePerspectives shapes Problem Definition  Relative frequency of simulation mode compared to test Analysis 1.2 Discussions Fi,j penalty function with gradient 1 Conclusions to correlation window ±5% 0.8 0.6 mid section uses Runge function 0.4 0.2 0 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  Correlation criterion: Test 1 2 3 4 5 frequency 72.00 102.06 173.97 181.34 213.69 Fi,j·MACi,j correlation status 3 3 0 0 0 MAC value 1.03 1.02 0.05 0.12 0.58 frequency filtered rel. Frequency 97% 103% 61% 141% 86% MAC value sim 7 70.05 3 1.029 0.000 0.000 0.000 0.001 8 105.36 3 0.000 1.021 0.048 0.024 0.001 9 139.63 0 0.004 0.000 0.000 0.006 0.151 10 140.09 0 0.023 0.000 0.004 0.002 0.002 11 184.02 0 0.000 0.001 0.011 0.011 0.577 9/22
  • 9. TECOSIM Analysis  Example model: rear subframe out of TEC|BENCH™ process Solutions  Correlation criterion considers best matching simulation mode: Introduction Perspectives  For each test mode take Test 1 2 3 4 5 Problem Definition the best matching frequency 72.00 102.06 173.97 181.34 213.69 Analysis simulation mode: correlation status 3 3 0 0 0 Discussions MAC value 1.03 1.02 0.05 0.12 0.58 maxfMACi = Conclusions max(Fi,j·MACi,j) rel. Frequency sim max 97% 103% 61% 141% 86% 7 70.05 3 1.029 0.000 0.000 0.000 0.001 8 105.36 3 0.000 1.021 0.048 0.024 0.001 9 139.63 0 0.004 0.000 0.000 0.006 0.151  Optimization objective: 10 140.09 0 0.023 0.000 0.004 0.002 0.002 11 184.02 0 0.000 0.001 0.011 0.011 0.577  Maximize correlation of best matching simulation Test 1 2 3 4 5 modes for all test modes frequency 72.00 102.06 173.97 181.34 213.69 correlation status 3 3 0 0 0 maximize  max fMACi MAC value rel. Frequency Σ 1.03 1.02 97% 103% 0.05 0.12 61% 141% 0.58 86% sim 7 70.05 3 1.029 0.000 0.000 0.000 0.001 8 105.36 3 0.000 1.021 0.048 0.024 0.001 9 139.63 0 0.004 0.000 0.000 0.006 0.151 10 140.09 0 0.023 0.000 0.004 0.002 0.002 11 184.02 0 0.000 0.001 0.011 0.011 0.577 10/22
  • 10. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: TCL programming Introduction Perspectives  Implementation of test data: Problem Definition Analysis  Reading test data file in csv format Discussions  Measurement point IDs (9)  Node IDs  Nodes SET Conclusions  Test modes (5): Frequency  DTABLE entry (5)  Test modes (5): shape vectors (27)  DTABLE entries(135) Test 1 2 3 4 5 Frequency 72.00 102.06 173.97 181.34 213.69 amplitude 0.91433 0.68783 0.56059 0.67002 0.69682 Shapes 1 0.24282 0.03218 -0.01758 0.01333 2.76E-01 0.46801 -0.03529 0.00371 -0.02999 4.48E-01 -0.01334 -0.31399 -0.27625 0.18199 -2.65E-02 2 0.04657 0.07936 0.02257 0.00164 2.01E-02 0.25833 -0.01541 0.02229 -0.03488 1.57E-01 -0.00081 -0.12870 -0.31011 0.34853 6.06E-04 3 -0.08430 0.08442 0.17604 -0.16444 -1.70E-01 0.00066 0.05959 0.00033 0.00534 -7.23E-02 11/22
  • 11. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: TCL programming Introduction Perspectives  Response definition for simulation modes: Problem Definition Analysis  EIGRL card with fixed number of modes (15) Discussions  Simulation modes (15): Frequency  DRESP1 entry (15) Conclusions  Simulation modes (15): shape vectors (27)  DRESP1 entries (405) Δ Mode specific displacement response not supported by OptiStruct! Solver switched to NASTRAN Δ Mode specific displacement response not defined in NASTRAN template! Direct programming of NASTRAN code (replacement.nas) referencing replacement.nas in bulk unsupported section moving of DRESP1 to separate include (waste_basket.nas) 12/22
  • 12. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: TCL programming Introduction Perspectives  Calculation of single frequency filtered MAC: Problem Definition Analysis  Definition of DEQATN DEQATN 2 f( Discussions  Parameters out of DTABLE: + t001x,t001y,t001z, + Conclusions Test shape (27), test freq (1) + t009x,t009y,t009z, + T,  Parameters out of DRESP1: + s001x,s001y,s001z, sim shape (27), sim freq (1) + + s009x,s009y,s009z,  Equation for MAC calculation + S)=(( + t001x*s001x+t001y*s001y+t001z*s001z+ + + t009x*s009x+t009y*s009y+t009z*s009z + )**2/((  Frequency filtered MAC + t001x*t001x+t001y*t001y+t001z*t001z+ test (5) vs. simulation (15): + + t009x*t009x+t009y*t009y+t009z*t009z + )*( Fi,j·MACi,j  DRESP2 (75) + s001x*s001x+s001y*s001y+s001z*s001z+ + + s009x*s009x+s009y*s009y+s009z*s009z + ))) + *MIN((S/(0.95*T))**4,(T/(0.95*S))**4, + 0.2+0.85/(1.+25.*(S/T-1.)*(S/T-1.))) 13/22
  • 13. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: TCL programming Introduction Perspectives  Selection of best correlating sim mode for each test mode: Problem Definition DEQATN 4 f( Analysis  Definition of DEQATN + m1, + Discussions  Parameters out of DRESP2: + m15, Conclusions test mode related simulation + )= + Max( mode filtered MACs (15) + m1, +  Selection of maximum MAC + m15, for each test mode  DRESP2 (5) + ) ΔDRESP2 referencing DRESP2 not supported by NASTRAN template NASTRAN template modified with specific section out of OptiStruct template 14/22
  • 14. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: TCL programming Introduction Perspectives  Sum of best correlating frequency filtered MAC values: Problem Definition Analysis  Definition of DEQATN DEQATN 3 f( + m1, Discussions  Parameters out of DRESP2: + + m5 Conclusions maximum MAC for each + )= test mode (5) + m1+ +  sum of maximum MAC + m5 for each test mode  DRESP2 (1) ! DRESP2 referencing DRESP2 now supported by modified NASTRAN template  Definition of design objective  Sum of maximum MAC  DESOBJ(MAX) (1) 15/22
  • 15. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: manual definition Introduction Perspectives  Request for optimization output: Problem Definition Analysis  Output of responses restricted to frequency and best correlating filtered MAC  DSAPRT (1) Discussions Conclusions Δ DSAPRT not supported by HyperWorks Manual definition in unsupported section  Definition of responses for output  SET (1) Δ SET of responses not supported in NASTRAN template Manual definition in unsupported section 16/22
  • 16. TECOSIM Analysis  Setup of optimization process in HyperWorks Solutions  Method used: manual definition Introduction Perspectives  Problem specific definition of design variables: Problem Definition  Stiffness of front/rear bushing 6DOF  DESVAR (12) Analysis Discussions  Stiffness of rubber bands 3DOF  DESVAR (3) Conclusions  PBUSH-property relations  DVPREL (15) Δ DVPREL for PBUSH not supported by NASTRAN Template  Direct definition of NASTRAN cards (replacement.nas) moving of DVPREL to separate include (waste_basket.nas)  Mass distribution for bushing bolts  DESVAR (4)  PMASS-propery relations  DVPREL (4) Δ DVPREL for PMASS not supported by NASTRAN Template  Direct definition of NASTRAN cards (replacement.nas) moving of DVPREL to separate include (waste_basket.nas) 17/22
  • 17. TECOSIM Analysis  Example model: rear subframe out of TEC|BENCH™ process Solutions  Optimized correlation status: Introduction Test 1 2 3 4 5 Perspectives frequency 72.00 102.06 173.97 181.34 213.69 Problem Definition Analysis correlation status MAC value 3 0.99 3 0.99 2 0 0.94 0.30 2 0 0.81 0.38 2 0.81 0.85 Discussions rel. Frequency 97% 103% 126% 121% 98% 100% 1% 141% 98% 86% sim Conclusions 7 70.82 70.05 3 0.994 0.000 0.001 0.016 0.096 0.097 8 102.10 105.36 3 0.001 0.000 0.986 0.993 0.311 0.288 0.190 0.171 0.012 9 142.30 139.63 2 0 0.000 0.044 0.709 0.000 0.130 0.000 0.049 0.013 0.010 0.673 10 171.78 140.09 0 0.000 0.267 0.399 0.001 0.019 0.008 0.004 0.006 0.302 0.008 11 173.26 184.02 2 0.023 0.001 0.002 0.008 0.003 0.011 0.011 0.883 0.855 12 193.51 0 0.025 0.006 0.015 0.005 0.290 13 208.92 3 0.024 0.006 0.009 0.009 0.814  Nearly perfect match for 1st and 2nd mode (MAC ~ 0.99)  Improved match of frequency and shape for 5th mode (mass damper effect)  Parameters identified:  Bushing stiffness  Distribution of masses inside rubber bushings 18/22
  • 18. TECOSIM Discussions  How does HyperWorks support the process? Solutions  All keywords necessary for the process are supported by HyperWorks Introduction Perspectives  Tcl programming interface allows for very efficient setup of a huge Problem Definition number of entities. Analysis  Tcl programming benefits of command logging (used like macro Discussions recording for easy access to command syntax). Conclusions  Different ways of work around  But there is a variety of entities not or not fully supported:  Mode specific nodal displacement response missing in OptiStruct, not supported in NASTRAN template  DRESP2 referring DRESP2 supported in OptiStruct template but not in NASTRAN template (identical syntax)  DVPREL for PBUSH missing in NASTRAN template  SET definition for DRESP entries missing 19/22
  • 19. TECOSIM Conclusions  Definition of a complex optimization process Solutions  Applicable for a wide range of structures Introduction Perspectives  Enabled by HyperWorks using tcl programming Problem Definition Analysis Discussions  But there is room for improvements: Conclusions  More consequent support of NASTRAN keywords DRESP2 (just update the template) DVPREL (add further property types: PBUSH, …) SET (add further types: DRESP, …) 20/22
  • 20. TECOSIM SolutionsIntroduction PerspectivesProblem DefinitionAnalysis Q&ADiscussionsConclusions Thank you! Contact TECOSIM Technische Simulation GmbH Dr.-Ing. Martin Müller-Bechtel Tech. Manager Virtual Benchmarking Ferdinand-Stuttmann-Straße 15 D-65428 Rüsselsheim Phone +49 (0)6142 / 8272-230 Fax +49 (0)6142 / 8272-249 Mail m.muellerb@de.tecosim.com www.tecosim.com 22/22