5th European HyperWorks Technology Conference                                                                             ...
Agenda                                                09-11-2011• Introduction into the pedestrian safety• FE-Model• Defin...
Introduction                                                                       09-11-2011• EU-Directive 2003/102/EG   ...
Introduction                                                                       09-11-2011• EU-Directive 2003/102/EG   ...
Introduction                                                                              09-11-2011• crash tests for pede...
Introduction                                                                              09-11-2011• bio-mechanical limit...
FEM - Model                                                      09-11-2011• Ford Taurus from George Washington University...
FEM - Model                                                                          09-11-2011• Ford Taurus from George W...
Legform impactor                                                                                   09-11-2011• Livermore S...
Energy absorber                                                                          09-11-2011• OHLER(R) -Extruded En...
Energy absorber                                                                              09-11-2011• FEM-Model      - ...
Design Variables                                                                          09-11-2011                      ...
Absorber – Geometry                                                                     09-11-2011• reduction of the absor...
wall thickness of the absorber                                                                    09-11-2011manufacturing...
Wall-thickness of the absorber                                                          09-11-2011                        ...
Wall-thickness of the absorber                                                09-11-2011© 2011 Ingenieurbüro Huß und Feick...
Wall-thickness of the absorber                                                09-11-2011© 2011 Ingenieurbüro Huß und Feick...
Wall-thickness of the absorber                                                09-11-2011© 2011 Ingenieurbüro Huß und Feick...
Wall-thickness of the absorber                                                09-11-2011© 2011 Ingenieurbüro Huß und Feick...
Wall-thickness of the absorber                                                09-11-2011© 2011 Ingenieurbüro Huß und Feick...
Wall-thickness of the absorber                                                                        v3         09-11...
Overview of the Design Variables                                                                                  09-11-20...
Optimization                                                  09-11-2011• HyperStudy 10.0• Constraints              • Acce...
Optimization results                                                                              09-11-2011              ...
Acceleration                                                        09-11-2011                                            ...
Bending angle                                                09-11-2011                                                - 2...
Internal Energy                                                        09-11-2011                                         ...
Design comparison – plastic strain                                                              09-11-2011      Absorber b...
Design comparison – plastic strain                                                                  09-11-2011      Absorb...
specific weight                                                                                       09-11-2011          ...
Summary                                                     09-11-2011• Optimization results      - reducing of the biomec...
09-11-2011           Thank you for your attention!© 2011 Ingenieurbüro Huß und Feickert GbR mbH   ingenieurbüro huß & feic...
09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
Upcoming SlideShare
Loading in …5
×

Optimization of an O-EEA-energy absorber for a pedestrian protection loadcase of a vehicle front structure with HyperStudy and LS-Dyna

1,271 views
943 views

Published on

Published in: Technology, Sports
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,271
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
30
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Optimization of an O-EEA-energy absorber for a pedestrian protection loadcase of a vehicle front structure with HyperStudy and LS-Dyna

  1. 1. 5th European HyperWorks Technology Conference 09-11-2011 Optimization of an O-EEA-energy absorber for a pedestrian protection loadcase of a vehicle front structure with HyperStudy and LS-Dyna Ihf: M.Eng. Alexander Froloff, Prof. Dr.-Ing. Armin Huß, Dipl.-Ing. Heiko Beck Novelis Deutschland GmbH: Dipl.-Ing. Christian Müller Ingenieurbüro Huß & Feickert GbR mbH Novelis Deutschland GmbH Im Kohlruß 1-3 Am Eisenwerk 30 65835 Liederbach 58840 - Plettenberg© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  2. 2. Agenda 09-11-2011• Introduction into the pedestrian safety• FE-Model• Definition of Design Variables• Optimization results• Summary© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  3. 3. Introduction 09-11-2011• EU-Directive 2003/102/EG - 2 steps phasing-in of safety standards for the protection of vulnerable road users• relaxed by EU-Directive 78/2009 und 631/2009© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  4. 4. Introduction 09-11-2011• EU-Directive 2003/102/EG - 2 steps phasing-in of safety standards for the protection of vulnerable road users• relaxed by EU-Directive 78/2009 und 631/2009© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  5. 5. Introduction 09-11-2011• crash tests for pedestrian safety prescribed by EU-Directive Child`s head Adult`s head Upper legLower leg© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  6. 6. Introduction 09-11-2011• bio-mechanical limit values according to EU-Directive 78/2009 Velocity Acceleration Bending angle Shear displacement 40 km/h 170g (150g*) 19° (15°*) 6 mm* limit values according to EU directive 2003/102/EGLower leg© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  7. 7. FEM - Model 09-11-2011• Ford Taurus from George Washington University - reduction to the supporting front structure© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  8. 8. FEM - Model 09-11-2011• Ford Taurus from George Washington University - reduction to the supporting front structure - modifying of the bumper structure • fitting of the cross beam to absorber-geometry • lower fascia moved forward and stiffened (with shell elements)© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  9. 9. Legform impactor 09-11-2011• Livermore Software Technology Corporation (LSTC) - detailed simulation model of the real impactor • different material description (stiff femur- and tibia-cylinder)© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  10. 10. Energy absorber 09-11-2011• OHLER(R) -Extruded Energy Absorber (O-EEA) - developed by Novelis Deutschland GmbH and OTSUKA LTD (Japan)• Material: Polypropylen, 100% recyclable• Adaptable to fascia or cross-beam• Manufacturing: - extrusion of the square tube - imprinting of the grooves Standard parameter of the OHLER(R) OEEA Width Height Peak Valley specific weight 50 mm 70 mm 0,9 mm 1,3 mm 0,3 kg/m© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  11. 11. Energy absorber 09-11-2011• FEM-Model - Absorber divided into cross stripes • different wall thickness is assigned to the stripes - (simulation of the thinning of the wall-thickness) - fully integrated shell elements© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  12. 12. Design Variables 09-11-2011 Groove depth Height Wall thickness Groove distance Width© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  13. 13. Absorber – Geometry 09-11-2011• reduction of the absorber width changes the distance to the fascia - side member divided in two pieces - distance between the side members is parameterized and related to the variation of absorber width - load transmission via rigid elements Side member© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  14. 14. wall thickness of the absorber 09-11-2011manufacturing-related exponential thinning of material from valley to peak• thinning out depends on - imprinting distance • distance between peak and valley - nominal thickness • thickness before deep-drawing (groove imprinting)© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  15. 15. Wall-thickness of the absorber 09-11-2011 five absorber segments with different wall thickness© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  16. 16. Wall-thickness of the absorber 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  17. 17. Wall-thickness of the absorber 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  18. 18. Wall-thickness of the absorber 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  19. 19. Wall-thickness of the absorber 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  20. 20. Wall-thickness of the absorber 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  21. 21. Wall-thickness of the absorber   v3   09-11-2011  ln     0 , 0001  1,12  10,12      t1, j  v3e    v3     ln     0 , 0008  1,12   9 , 02     t 2, j  v3e    v3     ln     0 , 0395  1,12   5,15     t3, j  v3e    v3     ln     0 , 35   1,12  3, 65      t 4, j  v3e    v3     ln     0 ,176   1,12  2 , 99      t5, j  v3e  • assumption, because of groove-depth variable 2,9  v3  5,9© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  22. 22. Overview of the Design Variables 09-11-2011 Groove- Groove- Thickness v3 Width Height Distance Depth [mm] [-] [mm] [mm] [mm] [mm] Nominal Value 0,9* 2,9 40 70* 15,0 4,0 Lower Bound 0,9 2,9 40 70 15,0 4,0 Upper Bound 2,0 5,9 50* 50 16,5* 7,0* t1(v3) t2(v3) Variable t3(v3) v3 B H RA RT t4(v3) t5(v3)* nominal value of the absorber before optimization© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  23. 23. Optimization 09-11-2011• HyperStudy 10.0• Constraints • Acceleration • Bending angle • Shear displacement• Objectives • Acceleration • Bending angle• Optimization method - Adaptive Response Surface Method• solved with LS-Dyna on a 4-node Linux cluster© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  24. 24. Optimization results 09-11-2011 Before Design 1 Design 2 Optimization Width 50 mm 50 mm 50 mm Height 70 mm 50 mm 50 mm Groove- 7,0 mm 4,8 mm 5,05 mm Depth Groove- 16,5 mm 15,6 mm 15,15 mm Distance Wall – 0,9 mm 0,7 mm 0,7 mm Thickness Acceleration 170 g 132,5 g 132,3 g Bending angle 22° 15,8° 15,9° Shear displacement 1.8 mm 1,54 mm 1,58 mm© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  25. 25. Acceleration 09-11-2011 - 23%© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  26. 26. Bending angle 09-11-2011 - 28%© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  27. 27. Internal Energy 09-11-2011 + 65%© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  28. 28. Design comparison – plastic strain 09-11-2011 Absorber before optimization Design 1 Design 2© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  29. 29. Design comparison – plastic strain 09-11-2011 Absorber before optimization Design 1 Design 2© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  30. 30. specific weight 09-11-2011 350,0 334 300,0 specific weight [gr./m] 250,0 200,0 164 170 150,0 before optimization Design 1 Design 2© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  31. 31. Summary 09-11-2011• Optimization results - reducing of the biomechanical limit values - higher rate of the plastic strain - smaller dimensions - less weight© 2011 Ingenieurbüro Huß und Feickert GbR mbH
  32. 32. 09-11-2011 Thank you for your attention!© 2011 Ingenieurbüro Huß und Feickert GbR mbH ingenieurbüro huß & feickert
  33. 33. 09-11-2011© 2011 Ingenieurbüro Huß und Feickert GbR mbH

×