Multidisciplinary Optimisation of a Business Jet MED Hinge for Production by Additive Manufacturing

2,449 views
2,318 views

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,449
On SlideShare
0
From Embeds
0
Number of Embeds
965
Actions
Shares
0
Downloads
109
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Multidisciplinary Optimisation of a Business Jet MED Hinge for Production by Additive Manufacturing

  1. 1. Multidisciplinary Optimisation of a Business Jet MEDHinge for Production by Additive ManufacturingMartin MuirEADS Innovation Works UKCo-authors - Jon Meyer – EADS Innovation Works, Alex Diskin – Israeli Aerospace Industries6th Altair European Technology ConferenceApril 22nd - 24th 2013, Turin, Italy
  2. 2. MDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirPage 2ContentsWhy the Main Exit DoorHinge?Problem FormulationPreliminary AnalysisContextResultsConclusion
  3. 3. Page 3Project ContextMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  4. 4. Page 4CleanskiesMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  5. 5. Page 5MED Hinge – Installed LocationMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirInstalled Location
  6. 6. Page 6MED Hinge - Operating KinematicsMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirForward Hinge
  7. 7. Page 7MED Hinge – Detailed DesignMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirMain PivotStep RunnerHatch Pivot
  8. 8. Page 8Preliminary AnalysisMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  9. 9. Page 9Analysis – Static LoadMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirDistance from centre of area toapplication point on GN Hinge= D = 746mmCentre of area for MEDF Dessure ACVF 2Pr *5.0 2/4746PrpressurezessureFFHingesN=Fhingeessurey ddFF *PrNFy 6320 NFZ 2373
  10. 10. Page 10Analysis – Static LoadMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirFNFy 6320NFZ 2373NFy 6320Flight Direction
  11. 11. Page 11Analysis – Fatigue LoadMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir982mmDoor LoadReaction Force• ~12kN opposed forces• 80000 cycles• 100% applied load
  12. 12. Page 12Design Detail – OriginalMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirPreliminary de-featuring of manufacturing data
  13. 13. Page 13Establishment of Grid IndependenceMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir01002003004005006007008009000 1 2 3 4Stress(MPa)Tetrahedral (2nd order) Element SizeChart Showing Results of Grid Sensitivity StudyAveraged StressMax StressEnhanced BC - Max StressEnhanced BC - Averaged Stress
  14. 14. Page 14Grid SelectionMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirBaseline 4 585 470 5.241 677 624 5.98571 5.752 670Baseline 0.5 679 626 6.04New BCs 2 776 650 6.5Reversed 2 670 571 5.75BaselineBaselineGrid SensitivityElementSizeModelMaxStressAveragedStressDisplacement~1% difference inmax stress~8% difference inaveraged stress300% increase inCPU time
  15. 15. Page 15Original IAI AnalysisMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir550MPa
  16. 16. Page 16Model ValidationMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir530MPa 670MPa
  17. 17. Page 17Displacement due to Static LoadingMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirMax Displacement =6.84mmHingeline displacement =4.55mm
  18. 18. Page 18Optimisation ProblemFormulationMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  19. 19. Page 19Optimisation DefinitionMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirDesign SpaceNon - Design SpaceLoads and ConstraintsObjectiveLoading Perturbation
  20. 20. Page 20Material Choice - Compliance OptimizationMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirIAI GN HingeModel Material VolumeDef(mm)Mass(Neck kg)Stress(max MPa)Stress(Av MPa)M0 15-5PH Baseline 5.61 1.25 670 626M1 15-5PH Solid 2.36 2.3 580 486M2 15-5PH 75 2.82 1.8 580 490M3 15-5PH 50 5.6 1.2 722 561M4 15-5PH 35 13.2 0.9 1700 1100M5 Ti64 Solid 5.6 1.3 576 480M6 Ti64 75 6.8 1 579 484M7 Ti64 50 12.9 0.7 642 470M8 Ti64 45 16.1 0.58 800 687M9 Ti64 40 23.2 0.52 1200 850M10 Ti64 35 32.2 0.45 1700 1100
  21. 21. Page 21Additive Manufacturing - ComplexitiesMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirProcess TypeMaterial TypeStatic PropertiesFeature SizesFatigue PropertiesMaterial Process TypeFatigue Stress(MPa) at 80kcyclesTitanium 6/4 EBM ~650Titanium 6/4 DMLS ~35015-5Ph Steel DMLS ~400Material Process Type Static Stress(MPa)Titanium 6/4 EBM ~900Titanium 6/4 DMLS ~90015-5Ph Steel DMLS ~1000
  22. 22. Page 22Introduction of Additional ConstraintsMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirPenalisationParametersStructural AnglesIntersectionsNon-design Space<35°xzy
  23. 23. Page 23Secondary Analysis – Fatigue InclusionMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirCompliance Minimum MassStress + Displacement+ VolumeStress + Displacement+ FatigueConsistently InfeasibleStress + Displacement+ Volume + Fatigue
  24. 24. Page 24Optimisation ResultsMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  25. 25. Page 25Optimal Structural DesignMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirAsymmetric Design
  26. 26. Page 26Inclusion of Symmetry PlaneMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirSymmetric Design
  27. 27. Page 27Direct ComparisonMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirMax stress = 615MPaStress change = ~ +8%Max Displacement =8.8mmDisplacement change = 55%Mass change = -53.2% (neck region)Max stress = 654MPaStress change = ~ +11%Max Displacement =9.89mmDisplacement change = 70%Mass change = -37.6% (neck region)TitaniumDesign 1 -No symmetryDesign 2Symmetry
  28. 28. Page 28Design Extraction and ValidationMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirMax Fatigue Stress –530MPaMax Static Stress –810MPaMass reduction of 57%including material changeStatic Case
  29. 29. Page 29ManufactureMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  30. 30. Page 30ManufacturingMDO Optimized MED Hinge for Production through Additive ManufacturingMartin MuirMaterialChoiceFatigueRequirementsWeightSavingCostProcessType5 Hinges per buildElectron Beam MeltingLess required supportSignificantly higherfatigue performanceNo Distortion, No heatTreatment
  31. 31. Page 31Concluding StatementsMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir
  32. 32. Page 32ConclusionsMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir1. Topology optimisation can achieve significant weight savings even when applied toheavily constrained, lightweight structures.2. The use of structural optimisation in conjunction with additive manufacturing (AM) canyield significant savings beyond the scope of those achievable through the isolated use ofeach technology alone.3. The use of additive manufacturing for the construction of topology optimised designssubjected to high cycle fatigue must be carefully considered4. Material, process type, build orientation and post processing are critical factors for anyfatigue loaded component created using PB AM. This is especially true for TO structurescreated with PB AM.5. Solving for minimum mass could not produce a feasible design under all constraints untilallowable stress levels were raised beyond the safe limits for production via AM.6. The topology optimised design shown in this presentation could not be cost effectivelyproduced using any manufacturing other than Electron Beam Melting Powder Bed AMcoupled with HIPing and polishing.
  33. 33. Page 33Martin MuirEADS Innovation Works UKE-mail : martin.muir@eads.comJonathan MeyerEADS Innovation Works UKE-mail : jonathan.meyer@eads.comAlex DiskinIsrael Aerospace Industries LtdE-mail : adiskin@Iiai.ilThank youMDO Optimized MED Hinge for Production through Additive ManufacturingMartin Muir

×