Your SlideShare is downloading. ×
0
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
2012 tus lecture 6
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

2012 tus lecture 6

269

Published on

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
269
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Lecture 6. Nanotechnology Fuel Cells Nano-composite materials Nanoelectronics and photonic Devices: Chemical and Biological Detectors Nanomedicine: Disease Detection Implants Delivery of Therapeutics Other nanomedicine Applications Risks
  • 2. Fuel Cells
  • 3. WHY FUEL CELLS? Emission of toxic pollutants when fossil fuel burnsBuild-up of CO2 & other greenhouse gases leading to global warming Decline of world oil productionDeregulation of electricity supply industry
  • 4. Advantages of Fuel Cells More efficient and convenient than internal combustion engines Modular Design •40-60% efficient Cogeneration •Zero-emission •Low maintenance costs Capacity to use different kinds of fuels •No moving parts More practical and cost effective than No moving parts batteries Fast response High specific energy and power High Efficiency Longer life (5-10 years vs. 1-3 for batteries) No emission of pollutants No long charging periods Lower capital cost in mass production No hazardous material disposal issues
  • 5. Polymer Electrolyte Membrane Fuel Cell (PEMFC) http://www.celanesechemicals.us/index/about_index/innov-home/innov-fuelcell/fuel_cell_contacts/fuel_cell_pictures.htm
  • 6. sjp@cie.unam.mx
  • 7. FUEL CELL MATERIALS Fuel cells will power the new hydrogen economy; and advances in materials science, especially nanomaterials will be key to enabling this. MEMBRANES A critical challenge is finding effective membrane materials. Membranes which can function without pressure, temperature, hydration may reduce the cost and complexity 2 mm 2 mmsjp@cie.unam.mx
  • 8. FUEL CELL MATERIALS Fuel cells will power the new hydrogen economy; and advances in materials science, especially nanomaterials will be key to enabling this. ELECTRODES AND CATALYSTS CO tolerant catalysts based on nanostructured Pt alloys are presently the most utilized. Critical challenges are finding new nanostructured catalytic materials and cheap synthesis routes. Nanostructured Pt-Ru catalystsjp@cie.unam.mx
  • 9. • Composites
  • 10. Figure 8.1. Schematic representations of nanocomposite materials with characteristic length scale: (a) nanolayered composites with nanoscale bilayer repeat length L; (b) nanofilamentary (nanowire) compositescomposed of a matrix with embedded filaments of nanoscale diameter d; (c) nanoparticulate composites composed of a matrix with embedded particles of nanoscale diameter d.
  • 11. • Nanoelectronics
  • 12. Fig. 1 Scanning-electron micrographof a Silicon-on-insulator integrated- phontonic Device. [2,3]
  • 13. Ballistic Nanotube MOS Transistors (Chen,Hastings)Placement of Nanotubes by E-Field D Nanotube Field-Effect Transistor(FET) (The first-demo) Al-Gate SWNTL Drain Source d HfO2 W L Ti SiO2 L~20 nm E-Beam Lithography
  • 14. Other Applications
  • 15. • Photonic Devices
  • 16. Figure 20.1. Schematic illustrations of 1D, 2D, and 3D photoniccrystals patterned from two different types of dielectric materials.
  • 17. Figure 20.3. (A) An illustration of the 3D woodpile lattice and (B) itsphotonic band structure calculated using the PWEM method. Thefilling fraction of the dielectric rods is 26.6%, and the contrast inrefractive index is set to be 3.6/1.0.(From Ref. 23 by permission ofElsevier B.V.)
  • 18. •• Figure 1 With the disordered lattice set up, the researchers launched a weak probe beam and imaged the intensity distribution in the x–y plane downstream as the light passed through the material (see the figure). In transverse localization, a narrow beam propagating through a disordered medium undergoes diffusive broadening until its width becomes comparable to the localization length. The greater the disorder, the faster the beam evolves into the localized state.
  • 19. • C. Chemical and Biological Detectors
  • 20. Microarrays for Sensing Applications 50 mm Polymeric networks patterned onto silicon surfaces have potential application as recognition elements in biosensor applications.
  • 21. Fig. 4 (a) A capacitive sensor structure and (b) Responseof the capacitive sensor using the vertically alignedMWNT’s in a template (Switch between 3% NH3 andpure N2).
  • 22. Photonic Sensors: Self-Referencing Surface-Plasmon Resonance (SR-SPR) Sensing Self-referencing Surface-Plasmon • Surface-plasmon resonance: Resonance Sensor – widely used for chemical sensing and for investigating bio-molecular interactions – high sensitivity, label free approach that measures refractive index changes near a metal-solution interface – most often measures binding of the target analyte to a functionalized surface, but • How can one differentiate between specific binding, non-specific binding, and changes in solution refractive index? • How can one integrate SPR on chip for multi-channel self-referenced sensing?Students: R. Donipudi, P. Bathae Kumeresh; Funded by ORAU
  • 23. • Nanomedicine
  • 24. A nanofilter fromLabNow gives afast count of whiteblood cells
  • 25. Application as Functional Components of Novel Devices • Nanomedicine – Diagnosis • Imaging • Sensors • DNA Sequencing – Arrays, Nanopore Sequencing – Therapeutics • Surgery • Drug Development – Arrays, Local Cellular Delivery • Drug Delivery – Microchip, Microneedles, Micro-/Nano-sphere • Tissue Engineering
  • 26. 1.Disease detection
  • 27. Fig 3 Nanoscale Electrode for in-vivo neurological recording.
  • 28. Fabrication process is summarized. (a) Free-standing membranes are spin coated with positive e-beam resist, and e-beam lithography is performed. (b) The nanohole pattern is transferred to SiNx membrane through RIE processes. (c) Oxygen cleaning process results in a free- standing photonic crystal-like structure. (d) Metal deposition results in a free-standing optofluidic nanoplasmonic biosensor with no clogging of the holes. (e) Scanning electron microscope images of patterned SiNx membrane is shown before gold deposition. (f) Gold deposition result in suspended plasmonic nanohole sensors without any lift-off process. No clogging of the nanohole openings is observed (inset).Published in: Ahmet A. Yanik; Min Huang; Osami Kamohara; Alp Artar; Thomas W. Geisbert; John H. Connor; Hatice Altug; Nano Lett. 2010, 10, 4962-4969.DOI: 10.1021/nl103025uCopyright © 2010 American Chemical Society
  • 29. (a) Immunosensor surface functionalization is illustrated in the schematics. Antiviral immunoglobulins are attached from their Fc region to the surface through a protein A/G layer. (b) Sequential functionalization of the bare sensing surface is illustrated (black) for the optofluidic nanohole sensors with a sensitivity of FOM ∼ 40. Immobilization of the protein A/G (blue) and viral antibody monolayer (red) result in the red shifting of the EPT resonance by 4 and 14 nm, respectively.Published in: Ahmet A. Yanik; Min Huang; Osami Kamohara; Alp Artar; Thomas W. Geisbert; John H. Connor; Hatice Altug; Nano Lett. 2010, 10, 4962-4969.DOI: 10.1021/nl103025uCopyright © 2010 American Chemical Society
  • 30. Detection of PT-Ebola virus (a) and Vaccinia (c) viruses shown in spectral measurements at a concentration of 108 PFU/mL. (c, d) Repeatability of the measurements is demonstrated with measurements obtained from multiple sensors (blue). Minimal shifting due to nonspecific bindings is observed in reference spots (red). Here, the detection sensors are functionalized with M-DA01-A5 and A33L antibodies for capturing PT-Ebola and Vaccinia viruses, respectively.Published in: Ahmet A. Yanik; Min Huang; Osami Kamohara; Alp Artar; Thomas W. Geisbert; John H. Connor; Hatice Altug; Nano Lett. 2010, 10, 4962-4969.DOI: 10.1021/nl103025uCopyright © 2010 American Chemical Society
  • 31. 2.Implants
  • 32. 3.Delivery of Therapeutics
  • 33. MEMS Based Detection and Drug Delivery for Treatment of Coronary Heart Disease (Ehringer, Chien, Keynton, Walsh, Cohn, Hinds)Early detection of sudden heart dysfunction using a micro-fabricatedimplantable device to monitor vital cardiac chemical changesRapid recovery from an ischemic attack by providing an efficient ATPdelivery system to the heart.
  • 34. Drug Delivery into Neural Tissue (Cornell)
  • 35. Self-regulated Drug Delivery Devices• Micro- and nanofabricated devices have many potential applications in medicine• For example, drug delivery devices can be combined with biosensors to create micro- and nanoscale self-regulated drug delivery devices MicroCHIPS, Inc. Micro-/nanoscale biosensor Drug Delivery Microdevice
  • 36. • Other Nanomedicine Applications
  • 37. Fig 3 Nanoscale Electrode for in-vivo neurological recording.
  • 38. Research Update III: Hippocampal Neuron Recordings in Awake Rats for up to 6 Months W4 ) . 8 1 ( 3 7 10 0 4 9 ( 1 2 . 1 ) 6 1 ( 1 5 . 1 ) mm Firing 20x150 µm Time → Spike Waveforms Firing Rate Stripcharts Place Fields (after 30 min) 1 month after implant 9 3 ( 2 3 . 1 ) 9 4 ( 2 3 . 2 )Site 3 Site 4 7 3 ( 1 8 . 1 ) 8 1 ( 2 0 . 1 ) Site 3 Firing Rate (Hz) 5 Site 4 150 µV DSP01b sig001 200 µs 12000 0 DSP03a 0 200 400 600 1 month sig003 Time (sec) 1 month 12000 8 2 ( 2 0 . 2 )Site 3 Site 4 6 months after implant Site 3 61(15.1) Firing Rate (Hz) 5 Site 4 150 µV 0 200 μs 0 200 400 600 ) 2 . 0 2 ( 2 8 Time (sec) 6 months 6 months Courtesy of Dr. Sam Deadwyler and Dr. Rob Hampson, Wake Forest Univ.
  • 39. Research Update I: New Ceramic-Based Conformal Microelectrodes Serial W22.5 x 2.5 cm wafer 60 0 mmCeramic-based Microelectrodes Side-by-SideAl2O3 substrates 37.5 to 125 µm1. Polyimide coatings “Ceramic-based2. Pt or Ir recording sites Microarrays”3. “Multi-purpose” tip and long shank designs 20x150 µm
  • 40. 2 Site 1 1.5 1 1 2 0.5 0 0 20 40 60 80 4 3 2 Site 2 1.5 Counts/bin 1 0.5 0 150 µV 0 20 40 60 80 200 µs 2 Site 3 1.5 1 0.5 0 0 20 40 60 80 2 Site 4 1.5 1 CA3 0.5 0 0 20 40 60 80 DG CA1 Ceramic MRI of Macaque Brain Probe W4 Recording Sites 2 1 4 Hippocampus 3 Research Update IV:20x150 mm Electrophysiological Recordings in Nonhuman Primates
  • 41. Research Update II: Simultaneous Stimulation and Recordings Stim: 100 µA 250 μA 500 µA 1 mA W2 Record Site 1 CA1 60 0m m Site 2 Stimulate CA3 Site 2a 20x150 µm Recording Sites Site 3 CA1 1 2150 µV200 µs 3 4 Site 3a 10 10 10 10 CA3 Firing Rate (Hz) 8 8 8 8 6 4 Site 4 6 4 6 4 6 4 S S 2 0 2 0 2 0 -10 -5 0 5 10 2 0 S = Stimulation Sites -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 Time (ms) Time (ms) Time (ms) Time (ms)
  • 42. Institute of Molecular Medicine 10 mmDiameter: 12 mmCompliance: 80 mm/mN, 4 mm/mN From: Patricia J. Cooper, Ming Lei, Long-Xian Cheng, and Peter Kohl J Appl Physiol 89: 2099-2104, 2000
  • 43. Institute of Molecular Medicine NanoMedicine Project 3Objective: To use hollow nanotubes as a delivery vehicle forsmall interference RNA (RNAi) to silence specific gene products.
  • 44. Institute of Molecular MedicineRNA injection via nanotubes
  • 45. Institute of Molecular MedicineCarbon Fiber for manipulating single cell Force Transducer Step Motor
  • 46. • Other Nanomedicine Opportunities
  • 47. • RISKS
  • 48. A group of near-naked protestors demonstratethe invasion of nanotechnology (into clothing)in front of the Eddie Bauer flagship store inChicago.The members of the group THONG (ToplessHumans Organized for Natural Genetics) wereupset the about the Nano-tex line of shirtsand khakis.(Popular Science, August 2005)
  • 49. Andre Nel,1,2* Tian Xia,1 Lutz Ma¨dler,3 Ning Li1

×