Managerial Economics

3,056 views
3,008 views

Published on

0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,056
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
169
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Managerial Economics

  1. 1. Managerial Economics & Business Strategy Chapter 5 The Production Process and Costs
  2. 2. Overview <ul><li>I. Production Analysis </li></ul><ul><ul><li>Total Product, Marginal Product, Average Product </li></ul></ul><ul><ul><li>Isoquants </li></ul></ul><ul><ul><li>Isocosts </li></ul></ul><ul><ul><li>Cost Minimization </li></ul></ul><ul><li>II. Cost Analysis </li></ul><ul><ul><li>Total Cost, Variable Cost, Fixed Costs </li></ul></ul><ul><ul><li>Cubic Cost Function </li></ul></ul><ul><ul><li>Cost Relations </li></ul></ul><ul><li>III. Multi-Product Cost Functions </li></ul>
  3. 3. Production Analysis <ul><li>Production Function </li></ul><ul><ul><li>Q = F(K,L) </li></ul></ul><ul><ul><li>The maximum amount of output that can be produced with K units of capital and L units of labor. </li></ul></ul><ul><li>Short-Run vs. Long-Run Decisions </li></ul><ul><li>Fixed vs. Variable Inputs </li></ul>
  4. 4. Total Product <ul><li>Cobb-Douglas Production Function </li></ul><ul><li>Example: Q = F(K,L) = K .5 L .5 </li></ul><ul><ul><li>K is fixed at 16 units. </li></ul></ul><ul><ul><li>Short run production function: </li></ul></ul><ul><ul><li>Q = (16) .5 L .5 = 4 L .5 </li></ul></ul><ul><ul><li>Production when 100 units of labor are used? </li></ul></ul><ul><li>Q = 4 (100) .5 = 4(10) = 40 units </li></ul>
  5. 5. Marginal Product of Labor <ul><li>MP L =  Q/  L </li></ul><ul><li>Measures the output produced by the last worker. </li></ul><ul><li>Slope of the production function </li></ul>
  6. 6. Average Product of Labor <ul><li>AP L = Q/L </li></ul><ul><li>Measures the output of an “average” worker. </li></ul>
  7. 7. Q=F(K,L) Increasing Marginal Returns Diminishing Marginal Returns Negative Marginal Returns Stages of Production Q L MP AP
  8. 8. Isoquant <ul><li>The combinations of inputs (K, L) that yield the producer the same level of output. </li></ul><ul><li>The shape of an isoquant reflects the ease with which a producer can substitute among inputs while maintaining the same level of output. </li></ul>L
  9. 9. Linear Isoquants <ul><li>Capital and labor are perfect substitutes </li></ul>Q 3 Q 2 Q 1 Increasing Output L K
  10. 10. Leontief Isoquants <ul><li>Capital and labor are perfect complements </li></ul><ul><li>Capital and labor are used in fixed-proportions </li></ul>Q 3 Q 2 Q 1 K Increasing Output
  11. 11. Cobb-Douglas Isoquants <ul><li>Inputs are not perfectly substitutable </li></ul><ul><li>Diminishing marginal rate of technical substitution </li></ul><ul><li>Most production processes have isoquants of this shape </li></ul>Q 1 Q 2 Q 3 K L Increasing Output
  12. 12. Isocost <ul><li>The combinations of inputs that cost the producer the same amount of money </li></ul><ul><li>For given input prices, isocosts farther from the origin are associated with higher costs. </li></ul><ul><li>Changes in input prices change the slope of the isocost line </li></ul>K L C 1 C 0 L K New Isocost Line for a decrease in the wage (price of labor).
  13. 13. Cost Minimization <ul><li>Marginal product per dollar spent should be equal for all inputs: </li></ul><ul><li>Expressed differently </li></ul>
  14. 14. Cost Minimization Q L K Point of Cost Minimization Slope of Isocost = Slope of Isoquant
  15. 15. Cost Analysis <ul><li>Types of Costs </li></ul><ul><ul><li>Fixed costs (FC) </li></ul></ul><ul><ul><li>Variable costs (VC) </li></ul></ul><ul><ul><li>Total costs (TC) </li></ul></ul><ul><ul><li>Sunk costs </li></ul></ul>
  16. 16. Total and Variable Costs <ul><li>C(Q): Minimum total cost of producing alternative levels of output: </li></ul><ul><ul><li>C(Q) = VC + FC </li></ul></ul><ul><li>VC(Q): Costs that vary with output </li></ul><ul><li>FC: Costs that do not vary with output </li></ul>$ Q C(Q) = VC + FC VC(Q) FC
  17. 17. Fixed and Sunk Costs FC: Costs that do not change as output changes Sunk Cost: A cost that is forever lost after it has been paid $ Q FC C(Q) = VC + FC VC(Q)
  18. 18. Some Definitions <ul><li>Average Total Cost </li></ul><ul><ul><li>ATC = AVC + AFC </li></ul></ul><ul><ul><li>ATC = C(Q)/Q </li></ul></ul><ul><li>Average Variable Cost </li></ul><ul><ul><li>AVC = VC(Q)/Q </li></ul></ul><ul><li>Average Fixed Cost </li></ul><ul><ul><li>AFC = FC/Q </li></ul></ul><ul><li>Marginal Cost </li></ul><ul><ul><li>MC =  C/  Q </li></ul></ul>ATC AVC AFC $ Q MC
  19. 19. Fixed Cost ATC AVC Q 0 AFC Fixed Cost Q 0  (ATC-AVC) = Q 0  AFC = Q 0  (FC/ Q 0 ) = FC $ Q ATC AVC MC
  20. 20. Variable Cost AVC Variable Cost Q 0 Q 0  AVC = Q 0  [VC(Q 0 )/ Q 0 ] = VC(Q 0 ) $ Q ATC AVC MC
  21. 21. ATC Total Cost Q 0 Q 0  ATC = Q 0  [C(Q 0 )/ Q 0 ] = C(Q 0 ) Total Cost $ Q ATC AVC MC
  22. 22. Economies of Scale LRAC $ Output Economies of Scale Diseconomies of Scale
  23. 23. Cubic Cost Function <ul><li>C(Q) = f + a Q + b Q 2 + cQ 3 </li></ul><ul><li>Marginal Cost? </li></ul><ul><ul><li>Memorize: </li></ul></ul><ul><li>MC(Q) = a + 2bQ + 3cQ 2 </li></ul><ul><ul><li>Calculus: </li></ul></ul><ul><li>dC/dQ = a + 2bQ + 3cQ 2 </li></ul>
  24. 24. An Example <ul><ul><li>Total Cost: C(Q) = 10 + Q + Q 2 </li></ul></ul><ul><ul><li>Variable cost function: </li></ul></ul><ul><li>VC(Q) = Q + Q 2 </li></ul><ul><ul><li>Variable cost of producing 2 units: </li></ul></ul><ul><li>VC(2) = 2 + (2) 2 = 6 </li></ul><ul><ul><li>Fixed costs: </li></ul></ul><ul><li>FC = 10 </li></ul><ul><ul><li>Marginal cost function: </li></ul></ul><ul><li>MC(Q) = 1 + 2Q </li></ul><ul><ul><li>Marginal cost of producing 2 units: </li></ul></ul><ul><li>MC(2) = 1 + 2(2) = 5 </li></ul>
  25. 25. Multi-Product Cost Function <ul><li>C(Q 1 , Q 2 ): Cost of producing two outputs jointly </li></ul>
  26. 26. Economies of Scope <ul><li>C(Q 1 , Q 2 ) < C(Q 1 , 0) + C(0, Q 2 ) </li></ul><ul><li>It is cheaper to produce the two outputs jointly instead of separately. </li></ul><ul><li>Examples? </li></ul>
  27. 27. Cost Complementarity <ul><li>The marginal cost of producing good 1 declines as more of good two is produced: </li></ul><ul><li> MC 1 /  Q 2 < 0. </li></ul><ul><li>Examples? </li></ul>
  28. 28. Quadratic Multi-Product Cost Function <ul><li>C(Q 1 , Q 2 ) = f + aQ 1 Q 2 + (Q 1 ) 2 + (Q 2 ) 2 </li></ul><ul><li>MC 1 (Q 1 , Q 2 ) = aQ 2 + 2Q 1 </li></ul><ul><li>MC 2 (Q 1 , Q 2 ) = aQ 1 + 2Q 2 </li></ul><ul><li>Cost complementarity: a < 0 </li></ul><ul><li>Economies of scope: f > aQ 1 Q 2 </li></ul><ul><li>C(Q 1 ,0) + C(0, Q 2 ) = f + (Q 1 ) 2 + f + (Q 2 ) 2 </li></ul><ul><li>C(Q 1 , Q 2 ) = f + aQ 1 Q 2 + (Q 1 ) 2 + (Q 2 ) 2 </li></ul><ul><li>f > aQ 1 Q 2 : Joint production is cheaper </li></ul>
  29. 29. A Numerical Example: <ul><li>C(Q 1 , Q 2 ) = 90 - 2Q 1 Q 2 + (Q 1 ) 2 + (Q 2 ) 2 </li></ul><ul><li>Cost Complementarity? </li></ul><ul><li>Yes, since a = -2 < 0 </li></ul><ul><li>MC 1 (Q 1 , Q 2 ) = -2Q 2 + 2Q 1 </li></ul><ul><li>Economies of Scope? </li></ul><ul><li>Yes, since 90 > -2Q 1 Q 2 </li></ul><ul><li>Implications for Merger? </li></ul>

×