• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Matematicas financieras
 

Matematicas financieras

on

  • 45,620 views

Para todos de interes

Para todos de interes

Statistics

Views

Total Views
45,620
Views on SlideShare
45,603
Embed Views
17

Actions

Likes
21
Downloads
1,710
Comments
2

3 Embeds 17

http://fundamentosdematematicafinanciera.pbworks.com 15
http://educacionvirtual.uta.edu.ec 1
http://www.slashdocs.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

12 of 2 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • Sacar la inflación de Banco de México

Matematicas financieras Matematicas financieras Presentation Transcript

  • Matemáticas Financieras Agosto- Diciembre de 2008.
  • Objetivo General
    • Proporcionar los temas fundamentales de las matemáticas financieras, a partir del concepto de Valor de Dinero en el Tiempo y sus derivaciones, como marco de referencia para la solución de problemas en la operación y evaluación de los instrumentos de inversión, deuda y cobertura que se operan en los mercados financieros.
  • Criterios de evaluación y acreditación
    • Examen: 60%
    • Trabajo final y exposición: 30%
    • Participación: 10%
  • Contenido
    • Conceptos Básicos
    • Interés Simple
    • Interés Compuesto
    • Tasas equivalentes, efectivas y nominales
    • Inflación
    • Técnicas de evaluación de proyectos de inversión
    • Anualidades y Perpetuidades
    • Amortización
  • Capítulo 1 CONCEPTOS BÁSICOS
  • Conceptos Básicos
    • Matemáticas Financieras
      • Son una rama de las matemáticas que explica el comportamiento del dinero a través del tiempo.
      • Es una herramienta básica para la toma de decisiones de tipo social, económico y financiero
    Capítulo 1. Conceptos Básicos
  • Capítulo 1. Conceptos Básicos CAMPO DE APLICACIÓN Yasukawa (2000) Tasa instantánea de descuento Análisis en contextos inflacionarios Valor Actual en el campo continuo Emisión de empréstitos Descuentos de tasas Valuación de deudas Procesos de Actualización Problemas relativos a la tasa de interés Tasa instantánea de interés Monto en el campo continuo Sistemas de amortizaciones Tasas y sus relaciones Amortizaciones de valores o extinción de deudas Procesos de Capitalización a Interés Simple y Compuesto APLICACIONES FUNDAMENTOS
    • Valor del Dinero en el tiempo
      • Aquí es importante familiarizarse con 2 elementos:
        • Dinero
        • Tiempo
      • Estos dos factores están estrechamente relacionados debido a que el valor del dinero dependerá del momento en que lo utilicemos.
    Capítulo 1. Conceptos Básicos
    • Ejemplo:
    • Si recibimos una cierta cantidad de dinero el día de hoy, probablemente nos sería más útil a que si nos la entregaran en dos meses
    • Ahora si decidimos no utilizar el dinero en este momento estamos sacrificando un beneficio presente por uno futuro
    • Este sacrificio debe ser compensado por una ganancia adicional .
    • Esta ganancia es la tasa de interés que no es más que el pago por el uso del dinero
    Capítulo 1. Conceptos Básicos
    • La tasa de interés dependerá de la oferta y la demanda
    • Si hay escasez de dinero el precio será alto y por tanto la tasa de interés será alta
    • Si hay abundancia de dinero el precio bajará y las tasas también
    TASA DE INTERÉS Características Capítulo 1. Conceptos Básicos
    • Costo del Dinero
    • Acreedor
    • Ahorrador o inversionista
    • Sacrifica el gasto presente
    • Dispone exceso de recursos en un ahorro o inversión
    • Recibe un rendimiento sobre sus ingresos
    • Deudor
    • Persona con necesidades financieras
    • Acude a Instituciones financieras para allegarse de recursos
    Capítulo 1. Conceptos Básicos El costo del dinero depende del papel que se asuma en alguna operación financiera, es decir acreedor o deudor
    • Tasas de interés
    • Tasa Activa
    • Activo de la Institución Financiera
    • El deudor pagará por hacer uso del dinero prestado
    • Tasa Pasiva
    • Pasivo de la Institución Financiera
    • La institución financiera ofrece al acreedor a cambio de resguardar el dinero por un determinado tiempo
    Capítulo 1. Conceptos Básicos
  • Costo del dinero Capítulo 1. Conceptos Básicos Ahorrador Institución Financiera (Banco) Deudor RENDIMIENTO (Tasa de interés pasiva) Exceso de dinero Falta de dinero COSTO DE CAPITAL (Tasa de interés activa)
  • RESUMEN
    • Conceptos:
      • Matemáticas Financieras y aplicaciones
      • Valor del dinero en el tiempo
      • Tasa de interés
      • Costo del dinero
      • Acreedor
      • Deudor
      • Tasa Activa
      • Tasa Pasiva
    Capítulo 1. Conceptos Básicos
  • Capítulo 2 INTERÉS SIMPLE
  • INTERÉS SIMPLE Características
    • Rendimiento
    • Se cobrará o pagará (dependiendo la situación) al final de un intervalo de tiempo
    • Utilizado en deudas a corto plazo (de un año o menos).
    Capítulo 2. Interés Simple
  • Componentes Capítulo 2. Interés Simple La tasa de interés y el plazo siempre deben de tener la misma base (Anual, mensual, bimestral, trimestral, etc. ) A menos que se aclare otra base, la tasa de interés se considera anual simple. Sigla Definición Descripción M Monto Capital más intereses generados al final del intervalo de tiempo. C Capital Inicial Cantidad invertida, ahorrada o prestada al inicio del período I Interés Rendimiento generado al final del período procedente del Capital Inicial i Tasa de interés Relación que se da entre el Interés y el Capital. Se expresa en porcentaje y representa el valor de una unidad monetaria en el tiempo. t Plazo Intervalo de tiempo que dura la operación financiera. Existen dos criterios para la aplicación del plazo, tomar como base Año Comercial de 360 días o Año Natural 365 días.
  • Funcionamiento Capítulo 2. Interés Simple Capital Capital Interés Fecha inicial Fecha final Monto Plazo
  • Ejemplo
    • El Tesorero del Municipio A decide pedir un préstamo a una institución bancaria por la cantidad de $200,000.00; acordando con el ejecutivo de cuenta que en período de dos meses le entregará al banco la cantidad de $215,000.00. ¿Cuál es el Interés así como la tasa pactada?
    • Se tienen los siguientes datos:
      • C = $200,000
      • M =$215,000
      • t = dos meses
    Capítulo 2. Interés Simple
    • De acuerdo a la definición de Monto se tiene que:
    • M = C + I
    • Al sustituir los datos a la fórmula se obtiene que:
    • 215,000 = 200,000 + I
    • Entonces si se despeja la fórmula,
            • I = $215,000 – $200,000
            • I = $15,000
    Capítulo 2. Interés Simple
    • La tasa de interés , de acuerdo a la definición, es la relación que existe entre el Interés o Rendimiento generado y el Capital, por lo tanto:
    • i = I / C
    • Sustituyendo,
    • i = $15,000 / $200,000
    • i = 0.075 o bien expresado en porcentaje se multiplica por 100 y se obtiene 7.5%
    • Lo anterior indica que el préstamo contraído generó un interés del 7.5% en DOS MESES
    Capítulo 2. Interés Simple
    • Para convertirlo a una tasa anual se tomará como base el año comercial:
    • i (anual) = i (del plazo) / T * 360
    • Sustituyendo,
    • i(anual) = 7.5% / 60 * 360
    • i(anual) = 45% anual
    Conversión a Tasa Anual Capítulo 2. Interés Simple
  • Comprobación
    • Podemos obtener también el Interés a través de la siguiente ecuación:
    • I = C * i * t
    • Sustituyendo,
    • I = $200,000 * (7.5% / 60 días) * 60
    • (Recordando la aclaración de que la base de la tasa de interés y el plazo, DEBE SER EL MISMO)
    • I = $15,000
    Capítulo 2. Interés Simple
  • VALOR FUTURO Características
    • El Valor Futuro es la suma del Capital e Intereses
    • Fórmula:
      • M = C + I
      • Sustituimos I por,
      • I= C * i * t
      • Por tanto,
      • M = C + (C * i * t)
    • Factorizando,
    • M = C (1 + i * t)
    Capítulo 2. Interés Simple
  • Ejemplo
    • Al jefe del Departamento de Finanzas del Organismo de Agua Potable y Alcantarillado del Municipio H, se le pide abrir una cuenta bancaria para invertir los excedentes de recursos por los próximos dos años
    • Investigando en diversas instituciones, la mejor tasa que le ofrecen es del 12% simple anual. ¿Cuánto obtendrá al término del plazo por el remanente de $300,000?
    Capítulo 2. Interés Simple
    • Los datos proporcionados son:
    • C = $300,000
    • i = 12% ó 0.12
    • t = 2 años
    • Sustituyendo
    • M = C (1 + i * t)
    • M = 300,000 ( 1 + 0.12 * 2 )
    • M = 300,000 ( 1 + 0.24 )
    • M= 300,000 ( 1.24 )
    • M= $372,000
    Capítulo 2. Interés Simple
  • Valor Presente Características
    • El Valor Presente o Actual se le denomina al Capital
    • Usos:
      • Conocer la cantidad de ahorro hoy para disponer en un futuro.
      • Ejemplo:¿Qué cantidad se tiene que ahorrar hoy para poder disponer de $150,000 en 10 años?
      • En cuestiones económicas hay necesidad de deflactar.
    Capítulo 2. Interés Simple
    • Fórmula:
    • M = C (1 + i * t)
    • Despejando la ecuación,
    • C = M / (1 + i * t)
    • Esta ecuación sugiere que es descontado al Valor Futuro los intereses generados durante un determinado período de tiempo.
    Capítulo 2. Interés Simple
  • Ejemplo:
    • Una persona decide retirar el dinero de su Fondo de Ahorro porque desea adquirir un automóvil nuevo.
    • Analizando la compra, se observó que el Primero de Marzo pagó $90,000.00; sin embargo el Primero de Diciembre decide venderlo para pagar unas deudas. Afortunadamente, la persona pudo venderlo a un precio de $110,000.00
    • Si sabemos que la tasa de mercado es de 11%, ¿Fue conveniente la operación?.
    • (Para poder resolver este tipo de problema es necesario comparar el ingreso de $110,000 a la fecha del primero de marzo en condicione similares de mercado)
    Capítulo 2. Interés Simple
    • Por tanto:
    • C1 = $90,000
    • M = $110,000
    • i = 11% ó 0.11 anual simple
    • t = 9 meses ó 9/12 = 0.75
    • Sustituyendo los datos:
    • C2 = 110,000 / (1 + 0.11 * 0.75)
    • C2 = 110,000 / ( 1.0825 )
    • C2 = $101,617
    • Ahora bien la diferencia entre C2 y C1 es de $11,617.00 lo que significa que a la persona le convino haber adquirido el automóvil y deshacerse de él 9 meses después, que haber invertido su fondo en alguna institución porque financieramente hubiera dejado de ganar dicha cantidad.
    Capítulo 2. Interés Simple
  • Resumen
      • Interés Simple y sus componentes
      • M = C + I
      • i (anual) = i (plazo) / T * 360
      • I = C * i * t
      • VF = C * (1 + i * t )
      • VP = M / (1 +i * t )
    Capítulo 2. Interés Simple
  • Capítulo 3 INTERÉS COMPUESTO
  • Características
    • Es utilizado en operaciones donde el Interés se van capitalizando , es decir, terminando un lapso de tiempo, éste se añade al Capital y se reinvierte
    • Utilizando en operaciones con plazo mayores a un año
    Capítulo 3. Interés Compuesto
  • Componentes Capítulo 3. Interés Compuesto Sigla Definición Descripción M Monto Capital más intereses generados al final del intervalo de tiempo. C Capital Inicial Cantidad invertida, ahorrada o prestada al inicio del período I Interés Rendimiento generado al final del período procedente del Capital Inicial i Tasa de interés Relación que se da entre el Interés y el Capital. Se expresa en porcentaje y representa el valor de una unidad monetaria en el tiempo. Período de Capitalización Lapso de reinversión de intereses (Anual, semestral, trimestral, bimestral, etc.) Frecuencia de Conversión Número de veces que el interés se capitaliza durante un año. t Plazo Intervalo de tiempo que dura la operación financiera. Existen dos criterios para la aplicación del plazo, tomar como base Año Comercial de 360 días o Año Natural 365 días.
  • Puntos a considerar
    • La tasa de interés y el plazo siempre deben de tener la misma base (Anual, mensual, bimestral, trimestral, etc. )
    • A menos que se aclare otra base, la tasa de interés se considera que su capitalización es anual.
    • La tasa de interés anual siempre debe convertirse de acuerdo al período de capitalización establecido.
    • El interés compuesto es mayor al interés simple.
    • A mayor frecuencia de conversión, mayor será el interés que se obtenga siendo igual la tasa anual nominal.
    Capítulo 3. Interés Compuesto
  • Funcionamiento Capítulo 3. Interés Compuesto Capital Intereses Fecha 0 Fecha 1 Monto 1 Capital Intereses Monto 2 Monto 1 Fecha 2 Período de capitalización 2 Frecuencia de Conversión = 2 Período de capitalización 1
      • ¿Cuál es la tasa de interés por período de:
    • 60% anual capitalizable mensualmente?:
    • i = 60% anual / 12 meses = 5%
    • 36% semestral capitalizable trimestralmente?:
    • i = 36% semestral / 2 trimestres = 18%
    • 12% trimestral? : i = 12%
    • 15% anual?: i = 15% anual / 1 año = 15%
    • 18% anual capitalizable semestralmente?:
    • i = 18% anual / 2 semestres = 9%
    • 18% anual capitalizable mensualmente?:
    • i = 18% anual / 12 meses = 1.5%
    • 6.5% mensual? : i = 6.5%
    Ejercicios sobre Período de capitalización y frecuencia de conversión: Capítulo 3. Interés Compuesto
    • ¿Cuál es la frecuencia de conversión?:
      • 60% anual capitalizable mensualmente?: 12 veces en 1 año
      • 36% semestral capitalizable trimestralmente?: 2 veces en 1 semestre
      • 12% trimestral? : 4 veces en 1 año
      • 15% anual?: 1 vez en un año
      • 18% anual capitalizable semestralmente?: 2 veces en 1 año
      • 18% anual capitalizable mensualmente?: 12 veces en 1 año
      • 6.5% mensual? 1 vez al 1 mes
    Capítulo 3. Interés Compuesto
  • Valor Futuro Características
    • Al Monto se le van adicionando los intereses generados por cada período de tiempo contemplando la tasa de interés capitalizada
    • Fórmula:
    • M = C (1 + i * t)
    • En este caso t = 1, ya que es un período, por lo que:
    • M = C (1 + i )
    • Ahora (1 + i ) representa cada período de capitalización, por lo que el Capital se verá afectado por cada uno de los períodos que dure la operación financiera es decir:
    Capítulo 3. Interés Compuesto
    • M = C (1 + i )* (1 + i ) *(1 + i )
    • (Para tres períodos de una operación financiera)
    • Por lo que, esta sucesión de montos expresada como progresión geométrica resulta:
    • M = C (1 + i)
    n Capítulo 3. Interés Compuesto C M3 1 + i 1 + i 1 + i M1 M2
  • Ejemplo
    • El jefe del área administrativa de la tesorería del Municipio “Z”, ha recibido una visita de un ejecutivo de una Sociedad de Ahorro y Préstamo para que abra una cuenta de ahorro.¿Cuánto recibirá al término de dos años?
    • Le ofrecen dos opciones:
      • Una cuenta a un plazo de 90 días con opción a reinvertirse los intereses, a una tasa anual fija de 9%. Si el Jefe de Administración tiene disponible $14,000.00;
      • Una cuenta a un plazo de dos meses reinvirtiendo los intereses, a una tasa fija de 8%.
      • Que pasaría si decidiera retirar su dinero al término de 1 año bajo la situación del inciso a
    Capítulo 3. Interés Compuesto
  • Inciso a)
    • Los datos son:
    • C = 14,000
    • t = 2 años
    • i = 9% anual capitalizable trimestralmente
    • En primer lugar es necesario convertir la tasa anual a trimestral:
    • i = 9% anual / 4 trimestres = 2.25% ó .0225
    • Ahora bien en 2 años hay 8 trimestres, por lo tanto n = 8
    • Sustituyendo,
    • M = C (1 + i )
    • M = 14,000 ( 1 + .0225 )
    • M = 14,000 ( 1.194831 )
    • M = $16,727
    n 8 Capítulo 3. Interés Compuesto
  • Inciso b)
    • b) Una cuenta a un plazo de dos meses reinvirtiendo los intereses, a una tasa fija de 8%.
    • C = 14,000
    • t = 2 años
    • i = 8% anual capitalizable bimestralmente.
    • Convirtiendo la tasa:
    • i = 8% anual / 6 bimestres = 1.33% ó 0.0133
    • n = 12
    • Sustituyendo,
    • M = 14,000 (1 + 0.0133)¹²
    • M = 14,000 ( 1.111779)
    • M = $16,405.31
    8 Capítulo 3. Interés Compuesto
  • Inciso c)
    • c) Que pasaría si decidiera retirar su dinero al término de 1 año bajo la situación del inciso a.
    • n = 4
    • Sustituyendo,
    • M = 14,000 ( 1 + 0.0225 )
    • M = 14,000 (1.093083 )
    • M = $15,303
    4 Capítulo 3. Interés Compuesto
  • VALOR PRESENTE Características
    • Es utilizado para determinar el Capital necesario para invertir actualmente , a una tasa determinada, para llegar a tener un Monto fijado.
    • Fórmula:
    • M = C (1 + i )
    • C = M / (1 + i) ó C = M * (1 + i)
    -n n n Capítulo 3. Interés Compuesto
  • Ejemplo
    • Una persona necesita contar con $250,000 para terminar de pagar su casa en dos años, por lo que decide acudir a una Operadora de Fondos de Inversión en donde le ofrecen un instrumento de inversión con una tasa de interés del 13% anual capitalizable semestralmente.
    • Si la tasa permanecerá constante durante este período ¿Con cuanto dinero deberá de abrir su cuenta en la Operadora?
    Capítulo 3. Interés Compuesto
  • Ejemplo
    • Tenemos los datos:
    • M = $250,000
    • i = 13% anual capitalizable semestralmente
    • Obteniendo la tasa del período:
    • i = 13% anual / 2 semestres = 6.5% ó 0.065
    • n = 4
    • Sustituyendo,
    • C = 250,000 / (1 + 0.065 )
    • C = 250,000 / 1.286466
    • C = $194,330
    4 Capítulo 3. Interés Compuesto
  • Resumen
    • Interés compuesto y sus componentes
    • Período de capitalización
    • Frecuencia de conversión
    • VF = C * (1 + i )
    • VP = M / ( 1 + i ) ó VP = M * ( 1 + i )
    n n -n Capítulo 3. Interés Compuesto
  • Capítulo 4
    • TASAS NOMINALES,
    • EFECTIVAS Y EQUIVALENTES
  • TASA NOMINAL
    • Tasa anual
    • Permanece constante durante la vigencia de la operación financiera
    INICIO FIN 15%
    • Ejemplos:
      • 25% anual capitalizable bimestralmente
      • 18% anual capitalizable trimestralmente
      • 11% anual capitalizable semestralmente
      • 5% anual
    Capítulo 4. Tasas
  • TASA EFECTIVA Período de capitalización (semestral) TASA NOMINAL ( 11 % anual ) + = Tasa nominal capitalizable al semestre ≠ 11% nominal anual capitalizable semestralmente 11% nominal anual ( Interés efectivamente generado durante un período )
  • TASA EQUIVALENTE
    • Dos tasas nominales anuales
    • con diferentes períodos de capitalización
    • serán equivalentes,
    • Generan los mismos intereses al final de un año.
    Capítulo 4. Tasas
    • Interés
    • ( 1 + i )
    Interés ( 1 + j/m) j = tasa de interés anual nominal m = no. capitalizaciones al año Tasa Equivalente TASA NOMINAL CAPITALIZABLE 1 VEZ AL AÑO TASA NOMINAL CAPITALIZABLE 2 ó MÁS VECES AL AÑO Capítulo 4. Tasas m (1 + i ) = ( 1 + j / m )
    • Ejemplo:
    • ¿Cuál es la tasa efectiva de un instrumento financiero pactado a una tasa de 17% anual capitalizable mensualmente?
    • Despejando i :
    m i = ( 1 + j / m ) - 1 i = ( 1 + 0.17 / 12) - 1 12 i = 1.183892 - 1 Capítulo 4. Tasas m (1 + i ) = ( 1 + j / m )
    • i = 1.183892 - 1
    i = 0.1838 ó 18.38% Tasa nominal: 17 % anual Tasa efectiva de interés ganado : 18.38% Tasa equivalente a una tasa del 17% capitalizable mensualmente es 18.38% Si la persona decide invertir una cantidad de dinero a una tasa de interés de 17% reinvirtiendo los intereses cada 30 días, obtendrá el mismo rendimiento si lo invierte a una tasa del 18.38% capitalizados anualmente. Capítulo 4. Tasas
  • Resumen
    • Tasa Nominal
    • Tasa Efectiva
    • Tasa Equivalente
      • (1 + i ) = (1 + j / m)
    m Capítulo 4. Tasas
  • Capítulo 5 INFLACIÓN
  • ¿Qué es la Inflación?
    • y por tanto,
    • la consiguiente pérdida del poder de compra o poder adquisitivo de la moneda.
    Aumento generalizado y sostenido de los precios de los bienes y servicios Capítulo 5. Inflación
  • ¿Causas?
    • El aumento de emisión de circulante sin un aumento equivalente de la producción de bienes y servicios.
    Capítulo 5. Inflación Y Yo O P P’ Po E E1 OA DA DA’
  • ¿Cómo se mide? Se mide mediante el Índice Nacional de Precios al Consumidor (INPC), el cual es un indicador que mide el crecimiento promedio que sufren los precios de los bienes y servicios a través del tiempo. Capítulo 5. Inflación
  • ¿Cómo se calcula el INPC?
    • Actualmente el INPC se calcula a través de un sistema de muestreo mediante el cual se recopilan 170,000 cotizaciones de productos específicos, que se agrupan en 313 conceptos genéricos provenientes de 46 localidades agrupadas en siete regiones del país.
    Banco de México Capítulo 5. Inflación
  • Características
    • FORMAS
    • DE
    • EXPRESION
    PORCENTAJE (mensual, quincenal, trimestral) Ej. 2.4% INDICE (Respecto al año base) Ej. 126.18028 Capítulo 5. Inflación
  • Efecto compuesto (progresión geométrica)
    • Ejemplo:
     (Enero – Marzo) = 5% + 2% + 3% = 10%  (Enero – Marzo) = 5% * 2% * 3% = 0.003% Capítulo 5. Inflación 31/ 01 /07 31/12/06 28/02/07 31/03/07 5% 2% 3%
  • Cálculo de la Inflación
    • = Índice del período actual
    • Índice del período anterior
    - 1 * 100 **Su cálculo es un incremento común de valores Capítulo 5. Inflación
  • Ejemplos
    • 1. Sí el índice de precios a finales de Marzo de 2006 fue de 121.06816000 y a fin de Diciembre del mismo año fue de 124.86924600, ¿Cuál fue la inflación en el período de tiempo?
    • (inicial) = 121.06816000
    • (final) = 124.86924600
    • Sustituyendo la fórmula:
    • (marzo – diciembre ) = ( 124.86924600 / 121.06816000 ) -1 * 100
    • (marzo – diciembre ) = 3.13%
    Capítulo 5. Inflación
    • Si la inflación mensual promedio durante seis meses ha sido del 1.2%, ¿de cuánto será la acumulada en el semestre?
    • **Lo que sugiere este ejemplo es que se tendrían que sumar la inflación de cada mes para poder obtener la inflación por el período o simplemente multiplicar 1.2% por 6.
    • Sin embargo, los valores inflacionarios se comportan como una progresión geométrica como es el caso de la ecuación de Valor Futuro con Interés Compuesto [ M = C (1 + i) ].
    • En consecuencia el cálculo correcto es el siguiente:
    n Capítulo 5. Inflación
  • Cálculo:
    •  (semestre) = [ (1 +  (mensual) ) - 1 ] * 100
    • Sustituyendo,
    •  (semestre) = ( 1. 012 ) - 1 * 100
    •  (semestre) = 7.41 %
    n 6 Capítulo 5. Inflación
  • Resumen
    • Concepto de inflación
    • Causas de la inflación
    • Medición de la inflación (INPC)
    • Cálculo del INPC
    • Formas de expresión de la inflación
    • Efecto compuesto: [ M = C (1 + i) ].
    • Fórmula:
      •  = ( Índice del período actual / Índice del período anterior -1 ) * 100
    n Capítulo 5. Inflación
  • Capítulo 6 TÉCNICAS DE VALUACIÓN DE PROYECTOS DE INVERSIÓN
  • Proyectos
    • Definición:
      • Conjunto de acciones planificadas que al optimizar el uso de los recursos disponibles (humanos, materiales y tecnológicos entre otros), minimiza los costos y maximiza los beneficios económicos y sociales del entorno
    • Tipos:
      • Privados: busca la mejor opción para el inversionista donde su dinero genere los mayores beneficios, tomando en cuenta el tiempo de recuperación de la inversión y el nivel de riesgo
      • Sociales: + Complejo. Implica el analizar el impacto que tendrá sobre el bienestar social de la comunidad.
    Capítulo 6. Proyectos de Inversión
  • Proyectos
    • Componentes:
      • Estudio de mercado
      • Estudio técnico
      • Estudio financiero
      • Estudio administrativo
    Aplicación: Valor del dinero en el tiempo Capítulo 6. Proyectos de Inversión
  • Medición de la Rentabilidad
    • Si el valor actual de los ingresos o beneficios generados son mayores a los desembolsos = RENTABLE
    Capítulo 6. Proyectos de Inversión ($ 300,000 ) $ 200,000 $ 250,000 $ 150,000 $ 50,000 Desembolsos Beneficios Período 0 1 2 3 4
  • 1. VALOR PRESENTE NETO (VPN)
    • Tiene como base la ecuación de Valor Presente con interés compuesto
    • Cálculo similar al empleado en el valor actual de una inversión en bonos u obligaciones.
    • Los administradores calculan el valor actual descontado para evaluar los proyectos de operaciones dentro de la empresa y las posibles compras de otras empresas y proyectos
    • El valor presente neto es el valor actual de los flujos de caja netos menos la inversión inicial.
    Capítulo 6. Proyectos de Inversión
    • Fórmula:
    • VA = C0 + M1 / (1 + i ) + M2 / (1 + i ) + M3 / (1 + i ) + M4 / (1 + i ) + … + Mn / (1 + i )
    • Simplificado:
    • VA = Co +  [ Mn / (1 + i ) ]
    • VA = Valor Actual de los flujos
    • Co = Capital inicial en el período cero.
    • M = Flujos positivos o negativos
    • i = tasa de interés cuyo rendimiento iguala el invertir la misma cantidad de dinero en otro instrumento financiero con menos riesgo. Es conocida también como tasa de descuento .
    • n = no. de período
    1 2 3 4 n n 1 n Capítulo 6. Proyectos de Inversión
  • Ejemplo
    • Co = $300,000
    • F1 = $50,000
    • F2 = $150,000
    • F3 = $250,000
    • F4= $200,000
    • t = 11% ó 0.11
    • Sustituyendo:
    • VA = - 300,000 + ( 50,000 / (1 + 0.11 ) + 150,000 / (1 + 0.11) + 250,000 / (1 + 0.11) + 200,000 ( 1 + 0.11 )
    • VA = - 300,000 + 45,045 + 121,743 + 182,797 + 131,746
    • VA = $181,331
    3 2 1 4 Los ingresos futuros respaldan la inversión inicial ya que es mayor a cero, teniendo una ganancia adicional por $181,331.
  • 2. PERÍODO DE RECUPERACIÓN DE INVERSIÓN
    • También denominado payback
    • Determina el tiempo necesario para que los flujos de caja netos positivos sean iguales al capital invertido.
    • Brinda un panorama cercano a la realidad para saber en que momento los beneficios igualan a los costos o se recupera la inversión
    • Razón de peso para dar preferencia a los de menor tiempo de recuperación (en los países donde la situación política y económica es muy inestable).
    Capítulo 6. Proyectos de Inversión
    • Se basa en la liquidez que pueda generar el proyecto y no realmente en la rentabilidad del mismo
    • Desventajas:
      • Sólo considera los flujos de caja netos positivos durante el plazo de recuperación y no considera estos flujos que se obtienen después de este plazo
      • No toma en cuenta la diferencia que existe entre los vencimientos de los flujos de caja netos positivos.
    2. PERÍODO DE RECUPERACIÓN DE INVERSIÓN (CONT.) Capítulo 6. Proyectos de Inversión
    • Ejemplo:
    • Sumando los flujos positivos M1 + M2 resulta un monto acumulado de $166,788; siendo el remanente $133,212 a cubrirse durante el tercer período. Esto indica que si dividimos 133,212 / 182,746 resultará la porción del tercer año en que se recupera la inversión ( 0.73), por lo tanto tenemos que la inversión se recupera en 2.73 años .
    Capítulo 6. Proyectos de Inversión
  • 3. TASA INTERNA DE RETORNO
    • El TIR es la tasa específica de descuento para la cual los beneficios descontados igualan el desembolso inicial, es decir, el NPV= 0.
    • Es el costo máximo de Capital que puede respaldar un proyecto de inversión
    • Se compara con la tasa requerida de retorno (RRR) para este tipo de inversión. El RRR es la misma tasa de descuento que se utiliza para calcular el VPN. Se aprobará el proyecto de inversión cuando el TIR sea mayor que el RRR.
    Capítulo 6. Proyectos de Inversión
    • Fórmula:
    • VA = Co +  [ Mn / (1 + r ) ]
    • Donde,
    • r = TIR
    • i = tasa de descuento (de acuerdo a condiciones del mercado o el inversionista) que utilizará como punto de comparación (RRR).
    • Si la TIR > i entonces la Inversión es recomendable
    • Si la TIR = i entonces la Inversión es indiferente y su elección dependerá de otros elementos
    • Si la TIR < i entonces la Inversión no es recomendable
    n 1 n Capítulo 6. Proyectos de Inversión
  • Cálculo de TIR
    • Para la obtención de la TIR, el procedimiento resulta un tanto complicado ya que se trata de un polinomio de grado n
    • Recomendable tener una calculadora financiera (ingresar flujos de efectivo)
    • Método alternativo: brinda una aproximación del valor real de la TIR y que se denomina: aproximaciones sucesivas . Dicho cálculo se basa en la regla de “prueba y error”.
    Capítulo 6. Proyectos de Inversión
  • Ejemplo por el método de aproximaciones sucesivas
    • TIR1 = 30%
    • TIR2 = 31%
    • TIR3 = 32%
    • Sustituyendo TIR1 = 30%:
    • VA1 = -300,000 + 38,461 + 88,757 + 113,791 + 70,025
    • VA1 = 11,034
    • Sustituyendo TIR2 = 31%:
    • VA2 = -300,000 + 38,167 + 87,407 + 111,205 + 67,911
    • VA2 = 4,690
    • Sustituyendo TIR3 = 32%:
    • VA3 = -300,000 + + 37,878 + 86,088 + 108,697 + 65,877
    • VA3 = -1,460
    • **La TIR se encuentra en el rango de 31 – 32%, cifra mayor a la tasa de descuento, por lo que la inversión es recomendable
    Capítulo 6. Proyectos de Inversión
  • 3. Relación Costo - Beneficio
    • Este indicador buscar medir que tanto los beneficios o flujos positivos del proyecto superan los costos
    • La decisión de clasificar como rentable o no el proyecto dependerá sólo si la relación es mayor a 1
    • Fórmula:
    • B/C = Valor Actual de los Beneficios
    • Valor Actual de los Desembolsos
    > 1 Capítulo 6. Proyectos de Inversión
  • Ejemplo
    • C0 = 300,000
    • M1 = 45,045
    • M2 = 121,743
    • M3 = 182,797
    • M4 = 131,746
    • t = 11% ó 0.11
    • B/C = (45,045 + 121,743 + 182,797 + 131,746) / 300,000
    • B/C = 481,331 / 300,000
    • B/C = 1.6
    • El resultado indica que por cada $1 invertido en el proyecto, se están recuperando $1.6, por lo tanto se considera que el proyecto es rentable.
    Capítulo 6. Proyectos de Inversión
  • Resumen
    • Proyectos
    • Medición de rentabilidad
      • VPN
      • Período de recuperación de inversión
      • TIR
      • Relación de Costo Beneficio
    Capítulo 6. Proyectos de Inversión
  • Capítulo 7 ANUALIDADES Y PERPETUIDADES
  • Anualidades
    • Son una sucesión de pagos generalmente iguales realizados en intervalos iguales de tiempo
    • Los intervalos no son necesariamente años, pueden ser: mensuales, bimestrales, quincenales, etc.
    • Ejemplos: sueldos quincenales, pagos mensuales por la renta de una casa, pagos mensuales a tarjetas de crédito, pagos anuales de primas de seguros, pagos mensuales de hipotecas
    • Intervalo de pago : tiempo que transcurre entre un pago y otro
    • Plazo : tiempo entre el primer y último pago
    • Rentas de una anualidad: son los pagos periódicos por la vida de la anualidad.
  • Clasificación de anualidades ANUALIDADES CIERTAS (Los plazos comienzan y terminan en fechas determinadas ) Se dividen de acuerdo al tiempo en: CONTIGENTES O EVENTUALES (El primer y/o el último pago dependen de algún suceso, sin saber cuando ocurrirá ) VENCIDAS (Los pagos se hacen al final de cada período) ANTICIPADAS (Los pagos se hacen al principio de cada período) DIFERIDAS (Los pagos se aplazan por un cierto tiempo)
  • Ejemplo de Anualidad Vencida
    • La beneficiaria de un seguro de vida recibirá $8,000 mensuales durante 10 años, sin embargo prefiere que le den el equivalente total al inicio del plazo. ¿Cuánto le darán si el dinero otorga un rendimiento promedio de 14% anual capitalizable mensualmente?
    Donde: R = renta por cada período i = tasa de interés capitalizable en p períodos al año p = frecuencia de capitalización de intereses n = plazo en años Capítulo 7. Anualidades y Perpetuidades
    • Los datos que se tiene son:
    • R= $8,000
    • i = 14% anual capitalizable mensualmente ó 0.14
    • p = 12
    • n = 10
    • Sustituyendo,
    • VA = 8,000 * ( 0.751406 / 0.011667 )
    • VA = $515,235
    Capítulo 7. Anualidades y Perpetuidades
  • Ejemplo de anualidad anticipada
    • Una persona renta una propiedad, cobrando una renta bimestral de $20,000, acordando con el arrendatario que los pagos deberán depositarse en el banco “X” el primer día de cada bimestre. Si el banco le paga al arrendador una tasa de interés de 6% anual capitalizable bimestralmente, ¿cuánto tendrá la persona al final de un año?
    Capítulo 7. Anualidades y Perpetuidades
    • Los datos son:
    • R = 20,000
    • i = 6% anual capitalizable bimestralmente ó 0.06%
    • p = 6
    • n = 1
    • Sustituyendo,
    VF = 20,000 * 6.21 VF = $124,270 Capítulo 7. Anualidades y Perpetuidades
  • Ejemplo de anualidad diferida
    • ¿Cuánto acumulará el municipio “P” en la fecha de jubilación de cada uno de sus empleados, si 3 años antes hace un depósito de $4,500 seguido de 20 depósitos mensuales de $1,200 cada uno, ganando intereses del 8% anual capitalizable mensualmente?
    • Para poder determinar el monto al final a los tres años con una tasa i = .08 / 12 , se tiene que calcular por separado:
    • El Valor final de $4,500 a tres años (ecuación de Valor Futuro con interés compuesto)
    • El Valor final de los depósitos a fecha del último de ellos (ecuación de Valor Futuro de una anualidad vencida)
    • El Valor final del monto acumulado de los depósitos al término de los tres años.
    • Suma de los resultados del Punto 1 + Punto 3
    Capítulo 7. Anualidades y Perpetuidades
    • Esto es:
    • M1 = 4,500 * (1.006667 )36
    • M1 = $5,716
    • M2 = 1,280.0004 * ( 21.318869 )
    • M2 = $25,753
    • M3 = 25,753 * ( 1.006667 )
    • M3 = $28,641
    • M4 = 28,641 + 5,716
    • M4 = $34,357
    16 Capítulo 7. Anualidades y Perpetuidades
  • Perpetuidades
    • Son una variable de las anualidades ciertas
    • Se les llama a aquellos pagos cuyo plazo no tienen fin
    • El número de períodos es muy grande
    • Se establece la tasa de interés del período de tiempo (no se capitalizan los intereses)
    • El valor de cada pago o renta equivalen a los intereses que se generan
    Capítulo 7. Anualidades y Perpetuidades
  • Perpetuidades (Cont.)
    • La tasa de interés es casi siempre anual y el valor de cada renta es igual a los intereses que se generan en el periodo
    • Ejemplos: inversiones inmobiliarias de arrendamiento, pensiones o rentas vitalicias.
    • Fórmula:
    • R = I = C * i
    • R = Valor de cada renta
    • I = Interés
    • C = Capital Inicial
    • i = tasa de interés del período
    Capítulo 7. Anualidades y Perpetuidades
    • Ejemplo 1:
    • Para que mis 2 hijos estudien becados en una universidad de prestigio, dentro de 10 años, es requisito fundamental -entre otros- depositar el día de hoy una suma de dinero en una institución financiera que paga mensualmente por ahorros de este tipo el 1.5% y que permite a la institución disponer de UM 2,500 mensuales a perpetuidad. ¿Cuánto debo depositar el día de hoy?.
    • R = I = 2,500
    • i = 1.5% ó 0.015  
    • C = ?
    • R = I = C * i
    • C = I / i
    • C = 2,500/0.015 = $166,667
    •  
    • (Debo depositar el día de hoy $ 166,6667.  Mensualmente el dinero gana $ 2,500 de interés. Este interés constituye la beca)
    Capítulo 7. Anualidades y Perpetuidades
    • Ejemplo 2:
    • Con el producto de sus ventas, la Lotería Nacional instituye una beca trimestral de $6,500. ¿De cuánto deber ser el capital a invertir a la tasa de interés del 15% compuesto trimestralmente?
    • R = $6,500
    • i = 15% ó 0.015 / 4 = 0.0375
    • R = I = C * i
    • C = R / i
    • Sustituyendo,
    • C = 6,500 / 0.0375
    • C = $173,333
    • Esto indica que mientras los $173,333 permanezcan invertidos con la misma tasa de interés, se podrá otorgar la beca de $6,500 trimestralmente por un tiempo indefinido.
    Capítulo 7. Anualidades y Perpetuidades
  • Resumen
    • Anualidades
      • Características
      • Clasificación
    • Perpetuidades
      • Características
    Capítulo 7. Anualidades y Perpetuidades
  • Capítulo 8 AMORTIZACIÓN
  • Características
    • Concepto : operación mediante la cual se extingue gradualmente una deuda, mediante pagos periódicos, es decir en intervalos de tiempo iguales que comprenden una parte del capital y el interés (pueden ser simples o compuestos según sea el caso)
    • Cada abono reduce el Capital, los intereses que se pagan van disminuyendo y aquella parte la deuda que aún so ha sido saldada se le conoce como saldo insoluto.
    • Aplicación importante de las Anualidades
    Capítulo 8. Amortización
  • Características
    • Dependiendo del tamaño y la frecuencia de los pagos, existen diferentes sistemas para amortizar un crédito. Estos son:
      • Amortización gradual :
        • Forma más usual para liquidar deudas,
        • Los abonos (amortización + intereses) periódicos tienen la misma frecuencia y son por cantidades iguales.
        • Es conveniente cuando la inflación es relativamente baja.
    Capítulo 8. Amortización
  • Características
      • Amortización constante :
        • La porción del abono amortiza el Capital adeudado es constante.
        • Ventajas: el cálculo del saldo insoluto en cualquier período resulta fácil de realizar
        • Útil en casos de refinanciar o cancelar la deuda en ese momento.
    Capítulo 8. Amortización
  • Características
      • Amortización con renta variable :
        • Cada abono y su correspondiente amortización es mayor que los anteriores.
        • Los primeros pagos son pequeños, haciendo, en ocasiones, que la deuda se incremente para luego comenzar a reducirse cuando los pagos son mayores.
        • Utilizado en operaciones a mediano y largo plazo, pero sobre todo cuando los índices inflacionarios son altos.
    Capítulo 8. Amortización
  • Tablas de amortización
    • Herramienta de registro de la deuda donde que plasma de manera ordenada la deuda inicial, capital pagado, intereses y el saldo insoluto.
    • Para poder construir una tabla de amortización se debe comenzar con la obtención del valor del abono , de acuerdo a lo siguiente:
    Donde: a = Valor del abono C = importe de la deuda i = tasa de interés del período n = no. de períodos en que se va a liquidar la deuda Capítulo 8. Amortización
  • Método de pagos iguales o anualidades
    • Este método consiste en hacer pagos iguales, el pago de capital va en aumento mientras que el pago de intereses va en decremento. El valor del pago se determina con la fórmula de anualidades.
    Capítulo 8. Amortización (a) (b) (c) (d) (e) (f) Período Saldo Inicial Pago Intereses Capital Saldo Insoluto 1 Capital k (b)1 . i (c)1 – (d)1 (b)1 – (e)1 2 (f)1 k (b)2 . i (c)2 – (d)2 (b)2 – (e)2 3 (f)2 k (b)3 . i (c)3 – (d)3 (b)3 – (e)3 n (f)n-1 k (b)n . i (c)n – (d)n (b)n – (e)n= 0
  • MÉTODO DE PAGO PERIÓDICO DE INTERÉS. CAPITAL AL VENCIMIENTO.
    • Este método realiza únicamente pagos de interés, haciendo la amortización total al final. Es la forma clásica de un bono.
    Capítulo 8. Amortización (a) (b) (c) (d) (e) (f) Período Saldo Inicial Pago Intereses Capital Saldo Insoluto 1 Capital (d)1 (b)1 . i 0.0 (b)1 – (e)1 2 (f)1 (d)2 (b)2 . i 0.0 (b)2 – (e)2 3 (f)2 (d)3 (b)3 . i 0.0 (b)3 – (e)3 n (f)n-1 (d)1+(f)n-1 (b)n . i Capital (b)n – (e)n= 0
  • Ejemplo del método de pagos iguales
    • El Tesorero del municipio “H”, le pide al encargado del área de finanzas que le realice un plan de pagos del préstamo contraído por $300,000 a 3 años a liquidarse mediante pagos semestrales con una tasa de interés del 17%.
    • Los datos son:
    • C = 300,000
    • i = 17% / 2 ó 0.085
    • n = 6 pagos
    • Para poder determinar el monto de los pagos semestrales se sustituye en la fórmula los datos:
    Capítulo 8. Amortización
  • Método de amortizaciones iguales más intereses sobre saldos insolutos.
    • Este método realiza amortizaciones de capital iguales; los intereses y el pago decrecen. La amortización se calcula dividiendo el capital total entre el número total de pagos.
    donde k = Capital n Capítulo 8. Amortización (a) (b) (c) (d) (e) (f) Período Saldo Inicial Pago Intereses Capital Saldo Insoluto 1 Capital (d)1 + (e)1 (b)1 . i k (b)1 – (e)1 2 (f)1 (d)2 + (e)2 (b)2 . i k (b)2 – (e)2 3 (f)2 (d)3 + (e)3 (b)3 . i k (b)3 – (e)3 n (f)n-1 (d)n + (e)n (b)n . i k (b)n – (e)n= 0
    • a = 25,500 / 0.387055
    • a = $65,882
    • Una vez teniendo el monto del Abono, se empezará a llenar la tabla de amortización.
    Capítulo 8. Amortización
  • Llenado de la Tabla de Amortización
    • Los datos que se sugieren colocar son: Período, Saldo Inicial, Abono, Intereses, Amortización y Saldo Insoluto.
    • En la primera columna, se anotará el no. de cada período, que para este ejemplo son 6
    • Se empezará a llenar los datos de manera horizontal y de izquierda a derecha comenzando con el Saldo inicial en el período cero (período donde comienza la vida del préstamo y no se pagan ni intereses ni capital).
    • Comenzando el período 1, vaciamos la cifra de abono que permanecerá constante durante la vida del préstamo.
    Capítulo 8. Amortización
  • Llenado de la Tabla de Amortización (Cont.)
    • Se realiza el cálculo de intereses: 300,000 * 0.085 = 25,500
    • La amortización como parte del Abono
    • ( Abono = Intereses + Amortización )
    • se calculará: 65,882.12 – 25,500 = 40,381.12
    • El saldo insoluto resultará de restar el Saldo Insoluto del Período anterior (300,000) menos la amortización (40,381.12)
    • Se comienza los cálculos del segundo período y así sucesivamente hasta que el Saldo Insoluto del último período sea cero.
    Capítulo 8. Amortización
  • La tabla llenada: Capítulo 8. Amortización Período Saldo Inicial Abono Intereses Amortización Saldo Insoluto 0 300,000 .00 300,000.00 1 300,000 .00 65,882.12 25,500 .00 40,381.12 259,617.88 2 259,617.88 65,882.12 22,067.52 43,814.60 215,803.28 3 215,803.28 65,882.12 18,343.28 47,538.84 168,264.44 4 168,264.44 65,882.12 14,302.48 51,579.64 116,684.80 5 116,684.80 65,882.1 2 9,918.21 55,963.91 60,720.88 6 60,720.88 65,882.12 5,161.28 60,720.8 8 0.00
  • Resumen
    • Características
    • Sistemas de amortización
    • Tabla de amortización
      • Cálculo del Abono
      • Llenado de tabla
    Capítulo 8. Amortización