• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Lineas1 120209195127-phpapp01
 

Lineas1 120209195127-phpapp01

on

  • 1,331 views

 

Statistics

Views

Total Views
1,331
Views on SlideShare
1,331
Embed Views
0

Actions

Likes
1
Downloads
10
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Lineas1 120209195127-phpapp01 Lineas1 120209195127-phpapp01 Presentation Transcript

    • OndasElectromagnéticas Guiada Brito Rodríguez Rolando
    • Equipo 1  Sergio Isai Palomino Sergio Becerra Grupo 4cm9
    • Líneas de transmisión:  1.0 Líneas de transmisión 1.1 Modos de Propagación en las líneas de Transmisión 1.2 Línea de transmisión balanceada y desbalanceada 1.3 Representación eléctrica de la línea de Transmisión 1.4 Líneas de transmisión uniforme de dos conductores 1.5 Ecuaciones diferenciales que definen el comportamiento de la línea de transmisión bajo diferentes condiciones de carga 1.6 Solución para las ecuaciones diferenciales de tención y corriente . Representación grafica
    • 1.0 Líneas de transmisión  De acuerdo con nuestro concepto modelo electromagnético, sabemos que las cargas y las corrientes variables con el tiempo son fuentes de campos y ondas electromagnéticas. Cuales comprenden dirección, descripción, potencia , velocidad de la luz o de disipación, distancia, medios de transmisión, etc.
    • 1.1 Modos de Propagación en las líneas de Transmisión  Una vez conceptualizada la onda en el espacio (TEM) , sabemos que esta puede ser dirigida a pesar de su transmisión radial a un punto saliente de otro. Guiadas por lo que llamamos líneas de transmisión:Líneas de transmisión de placasparalelas:Consiste en la transmisión defrecuencias de microondas entre dosplacas paralelas separadas por unalamina de dieléctrico de grosoruniforme con bajos costos usandotecnología como la de los circuitosimpresos. (micro tiras).
    • Líneas de transmisión de dos alambres:Consiste en la colocación de dos alambres paralelos en unadistancia uniforme esta onda es un poco anticuada ya a losnuevos medios pero aun se puede ver en el cable plano que baja la señal de la antena a el televisor podría decirse comoun puente físico entre el emisor que le sigue al receptor yenvía a un traductor.
    • Líneas de transmisión coaxial: este es un cable con un forro y forma especial para sufuncionamiento se cubre un alabare central y mas poderoso en cuestión de grosor y conductividad al recibir la señal odiferencia de potencial positiva el recubierto por un aislantey a su vez el segundo conductor en un ilaje mas fino cubreen forma de forro estas dos capas para ser recubierto con suaislante esto con fin de confinar el campo eléctrico ymagnético dentro de la región dieléctrica.
    • LINEAS DE TRANSMISION BALANCEADA Y DESBALANCEADA Las líneas de transmisión se clasifican generalmente como balanceadas o desbalanceadas.  Balanceada: Los dos conductores son suspendidos a la misma altura sobre el piso. Ninguno de ellos está conectado a tierra; el potencial de uno es igual y de signo contrario al potencial del otro, con relación a tierra. A este tipo de configuración se le llama “línea balanceada”. Los dos conductores son suspendidos a la misma altura sobre el piso. Ninguno de ellos está conectado a tierra; el potencial de uno es igual y de signo contrario al potencial del otro, con relación a tierra. A este tipo de configuración se le llama “línea balanceada”.
    • Desbalanceada:  En cambio, si por ejemplo, los dos  conductores están en un plano vertical, el conductor inferior tiene una capacitancia más grande que la del superior con relación al piso, y se dice que la línea esta “desbalanceada” o desequilibrada porque las corrientes resultantes en los dos conductores son diferentes.
    • 1.3 Representación eléctrica de la línea de Transmisión  A diferencia de los ejemplos tratados en el Análisis de Circuitos, en las Líneas de Transmisión (LT) se manejan normalmente tensiones y corrientes con longitudes de onda pequeñas en relación a la longitud total de la línea empleada. Esto implica un tratamiento diferente para las tensiones y corrientes, involucrando una nueva variable que es la posición a lo largo de la línea. La LT presenta una Impedancia Característica (Z0), y los elementos comentados anteriormente representarán la única complicación si la línea está terminada en una impedancia terminal (ZT) igual a la de la LT. Esta condición define el concepto de línea acoplada. Para otras condiciones (Z0 distinta de ZT), existirán ondas que se reflejarán desde la carga hacia el generador e interactuarán con las ondas transmitidas. Esto dará lugar a un efecto denominado "onda estacionaria". Los nuevos elementos para este caso de líneas "desacopladas" son el Coeficiente de Reflexión y la Relación de Onda Estacionaria de Tensión (VSWR = Voltage Standing Wave Ratio). El objetivo de ingeniería implica conocer los métodos y realizar los cálculos necesarios para lograr que una línea desacoplada se comporte como una línea sin reflexiones, logrando así un uso eficiente de la misma en la transmisión de señales de información o de potencia.
    •  Postulado 1.- El sistema o línea uniforme consiste de dos conductores rectos y paralelos. El adjetivo "uniforme" significa que los materiales, dimensiones y sección transversal  de la línea y el medio que la rodea, permanecen constantes en todo el trayecto. Típicamente en un extremo se conecta una fuente de señal y en el otro una carga, como se muestra: Figura 1.- Representación de una Línea de Transmisión. No significa que los dos conductores sean del mismo material o tengan la misma forma en su sección transversal. El análisis es válido para un conductor de cualquier material y sección transversal que actúe junto con otro conductor con diferentes características, o para un alambre paralelo a cualquier plano conductor o banda (pista de circuito impreso).
    •  Algunas secciones transversales de conductores usados en ingeniería se muestran:  Figura 2.- Secciones transversales de varias líneas de transmisión prácticas.En general, las torsiones o curvaturas en una línea de transmisión violan el postulado de"uniformidad" y crean efectos no explicables por la teoría de circuito distribuido. Lomismo sucede con cualquier discontinuidad en la línea, tal como el punto de conexiónentre dos líneas uniformes que difieren físicamente en alguna forma.
    •  Postulado 2.- Las corrientes en los conductores de la línea fluyen únicamente en la dirección de la longitud de la línea. Bajo ciertas condiciones, las señales pueden propagarse en cualquier línea de transmisión uniforme con la totalidad de la corriente o una componente de ella fluyendo alrededor de los conductores, en lugar de fluir a lo  largo de ellos. Estos casos no se presentan en una LT y se conocen como modos de propagación en una guía de onda. Postulado 3.- En la intersección de cualquier plano transversal a los conductores de una línea de transmisión, las corrientes instantáneas totales en los dos conductores son iguales en magnitud, pero fluyen en direcciones opuestas. En la teoría elemental de redes, para el circuito mostrado en la fig. 1 se estipula que la corriente es la misma en todos los puntos del circuito en un instante dado. El postulado 3 admite que las corrientes instantáneas sean diferentes en distintas secciones transversales de la línea, en el mismo instante. Claramente esto no es posible sin violar la Ley de Kirchhoff de Corrientes, a menos que éstas puedan fluir transversalmente entre los dos conductores en cualquier parte a lo largo de la longitud de la línea. Postulado 4.- En la intersección de cualquier plano transversal a los conductores de la línea hay un valor de diferencia de potencial único entre los conductores, en cualquier instante, que es igual a la integral del campo eléctrico a lo largo de todas las trayectorias en el plano transversal, entre cualquier punto sobre la periferia de uno de los conductores y cualquier punto sobre la periferia del otro. De la misma manera que el postulado 3, este postulado tiene como consecuencia descartar los modos de propagación en la guía de onda, para los cuales la integral del campo eléctrico no es, en general, independiente de la trayectoria. Postulado 5.- El comportamiento eléctrico de la línea se describe completamente por cuatro coeficientes del circuito eléctrico distribuido, cuyos valores por unidad de longitud de la línea son constantes en cualquier parte de esta. Estos coeficientes de circuito eléctrico son resistencias e inductancias uniformemente distribuidas, como elementos de circuito, en serie a lo largo de la línea, junto con capacitancias y conductancias uniformemente distribuidas, como elementos de circuito, en paralelo a lo largo de la línea.
    •  Definiciones de los Coeficientes.- Los símbolos para éstos son: R, L, G y C, cuyas definiciones son:conductores. Unidades: Ohms/metro. R.- Resistencia total en Serie de la línea por unidad de longitud, incluyendo ambosL.- Inductancia total en Serie de la línea por unidad de longitud, incluyendo lainductancia debida al flujo magnético interno y externo a los conductores de la línea.Henrios/metro.G.- Conductancia en paralelo de la línea por unidad de longitud. Es una representaciónde las pérdidas que son proporcionales al cuadrado de la tensión entre los conductores oal cuadrado del campo eléctrico en el medio. Generalmente G representa una pérdidainterna molecular de los materiales aislantes dieléctricos. Siemens/metro.C.- Capacidad en paralelo de la línea por unidad de longitud. Farads/metro.Nota.- Los símbolos definidos tienen diferentes significados y dimensiones que losempleados en el análisis de circuitos eléctricos. En el caso de las líneas de tx, tratadascomo redes de dos puertos con longitudes no despreciables, dichos símbolos representanresistencia, inductancia, etc, por unidad de longitud.
    •  COORDENADAS Y VARIABLES.-El análisis de la línea de transmisión es unidimensional, con un eje de coordenadas únicoparalelo a la longitud de la línea. Este es el eje z (minúscula para diferenciar de Z, impedancia.) Dicha coordenada tiene su origen en la fuente de señal.En algunas ocasiones la distancia de un punto sobre la línea a la carga, se indica por unacoordenada d, con origen en la carga y creciendo de derecha a izquierda. El símbolo ð seusa normalmente para la longitud total de la línea. Esto es: Figura 3.- Coordenadas en una Línea de Transmisión.
    •  i(z, t) = Corriente instantánea en un punto específico sobre la línea de tx, es decir, corriente en el tiempo t y en la coordenada z. Los símbolos en mayúsculas representan valores fasoriales de números complejos, con magnitudes en valores rms. Si no son designados específicamente como cantidades en la carga o en la fuente de señal, serán funciones de la posición a lo largo de la línea.  I(z) = Valor rms complejo (fasorial) de una corriente, en la coordenada z.En una coordenada z sobre una línea de tx, como se muestra en la figura siguiente, una tensión se puederepresentar por una flecha de un conductor a otro, en el plano transversal a z. La punta de la flecha tieneuna polaridad positiva, y la tensión es positiva cuando la flecha está dirigida hacia el conductor superior.Similarmente, las corrientes en la coordenada z se indican por dos puntas de flecha una en cadaconductor y apuntando en direcciones opuestas (postulado 3). El signo de la corriente es positivo cuandola corriente del conductor superior fluye en la dirección creciente de z. Figura 4.- Tramos de línea de Transmisión mostrando las convenciones especificadas, en el dominio del tiempo y en el de la frecuencia.
    • Líneas de transmisión uniforme de dos  conductores Las líneas que consisten de dos conductores (bifilar, coaxial, microcinta, placas paralelas), y varias otras estructuras como la triplica, transmiten la información electromagnética fundamentalmente de una manera tal en que tanto el campo eléctrico como el campo magnético de la señal son transversales o perpendiculares a la dirección de propagación. A esta forma en que la señal es transmitida se le llama modo de propagación transversal electromagnética o, abreviadamente, TEM.