Your SlideShare is downloading. ×
Finalizaciony explicando 1 ejemplo
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Finalizaciony explicando 1 ejemplo

328
views

Published on

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
328
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1.  1) Al lanzar un dado, ver si se obtiene un 5 (éxito) o cualquier otro valor (fracaso). Lo primero que se hace en este experimento es identificar el fracaso o el éxito, ya que en este de Bernoulli solo se pude obtener dos resultados 1)Se considera éxito sacar un 5, a la probabilidad según el teorema de Laplace (casos favorables dividido entre casos posibles) será 1/5. p = 1/5 2) Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar cualquier otro resultado, entonces a la probabilidad se le restará 1. q= 1 –p p= 1- 1/5 p=4/5 3) La variable aleatoria X medirá "número de veces que sale un 5", y solo existen dos valores posibles, 0 (que no salga 5) y 1 (que salga un 5). Por lo que el parámetro es (X= Be(1/5) p=1/5
  • 2. La probabilidad de que obtengamos un 5 viene definida como la probabilidad de que X sea igual a 1. Entonces ahora los datos que obtuvimos se sustituyen en la fórmula. P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2 La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0. P(x=0) = (1/5)0 * (4/5)1 = 4/5 = 0.8Este experimento nos dice que hay 0.2 de probabilidad de que salga el numero 5 en el dado, y de que no salga ese numero existe la probabilidad del 0.8.
  • 3.  Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces. B(4, 0.5) p = 0.5q = 0.5
  • 4.  En el ejemplo anterior se calculan las probabilidades de que al tirar una moneda salgan mas caras que cruces y para eso La moneda es lanzada 4 veces de esos 4 tiros solo 1 cae cara y los otros 3 tiros cae cruz pero el resultado va a variarprobabilidades:1cara-3 cruces 2 caras- 2 cruces3 caras- 1 cruz 2 cruces- 2 caras
  • 5.  Si un banco recibe en promedio 6 cheques sin fondo por día, ¿ Cuales son las probabilidades reciba,a) Cuatro cheque sin fondo en un día dado,b) B)reciba 10 cheques sin fondo en cualquiera de dos días consecutivos  Variable discreta= cantidad de personas  Intervalo continuo= una hora  Formula
  • 6.  P(x): Probabilidad de que ocurran x éxitos Número medio de sucesos esperados por unidad de tiempo. e: es la base de logaritmo natural cuyo valor es 2.718 X: es la variable que nos denota el número de éxitos que se desea que ocurran
  • 7.  A) x= Variable que nos define el número de cheques sin fondo que llega al banco en un día cualquiera; El primer paso es extraer los datos Tenemos que o el promedio es igual a 6 cheques sin fondo por día e= 2.718 x= 4 por que se pide la probabilidad de que lleguen cuatro cheques al día
  • 8.  =6 e= 2.718 X= 4 P(x=4, = 6) =(6)^4(2.718)^-6 4!  =(1296)(0,00248)  24  =o,13192  Es la probabilidad que representa de que lleguen cuatro cheques sin fondo al día
  • 9.  B) X= es la variable que nos define el número de cheques sin fondo que llegan en dos días consecutivos =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días consecutivos  Lambda por t comprende  al promedio del cheque a los dos días DATOS = 12 Cheques sin fondo por día e= 2.718 X=10 P(x=10, =12 )= (129^10(2.718)^-12 10! =(6,191736*10^10)(0,000006151) 3628800 =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos días consecutivos
  • 10. Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ, y se designa por N(μ, σ), si se cumplen las siguientes condiciones:1. La variable puede tomar cualquier valor: (-∞, +∞)2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss:
  • 11.  El campo de existencia es cualquier valor real, es decir, (-∞, +∞). Es simétrica respecto a la media µ. Tiene un máximo en la media µ. Crece hasta la media µ y decrece a partir de ella. En los puntos µ − σ y µ + σ presenta puntos de inflexión. El eje de abscisas es una asíntota de la curva.
  • 12.  Un fabricante de focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?:
  • 13. 520 521 511 513 510 µ=500 h513 522 500 521 495 n=25496 488 500 502 512 Nc=90%510 510 475 505 521 X=505.36506 503 487 493 500 S=12.07
  • 14.  Para poder resolver el problema lo que se tendrá que hacer será lo siguiente se aplicara una formula la cual tendremos que desarrollar con los datos con los que contamos. Tendremos que sustituir los datos t= x -μ SI n α = 1- Nc = 10% v = n-1 = 24 t = 2.22

×