• Like
Th1_Gene Pyramiding to Improve Green Super Rice by Molecular Marker-assisted Selection
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Th1_Gene Pyramiding to Improve Green Super Rice by Molecular Marker-assisted Selection

  • 223 views
Published

3rd Africa Rice Congress …

3rd Africa Rice Congress
Theme 1: climate resilient rice
Mini symposium: Enhancing rice yield potential
Author: Yuqing He

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
223
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
15
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Gene Pyramiding to Improve Green Super Rice by Molecular Marker-assisted Selection Yuqing He National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Huazhong Agricultural University Wuhan, China Email: yqhe@mail.hzau.edu.cn
  • 2. The Problems of hybrid rice in China • Lose of disease resistance (blast, bacterial blight) • Susceptible to insect pest (yellow stem borer and brown planthopper) • Cooking and eating quality • Ever increasing demands for increase yield
  • 3. Strategies for developing Green Super Rice Green Super Rice should possess resistances to multiple insects and diseases, high nutrient efficiency, and drought resistance, promising to greatly reduce the consumption of pesticides, chemical fertilizers, and water. Zhang, PNAS, 2007, 16, 104 (42): 16402–16409
  • 4. Bt gene to improve hybrid rice with stem borer and leaffolder resistance Tu, J.et al. Nature Biotech, 2000,18:1101-1104
  • 5. Bacterial Blight resistance to improve hybrid rice Chr. 11 Chr. 6 G1465 2.0 1.5 RG1109 AFLP1415 C50 4.0 2.8 1.0 0.8 0.8 3.0 C133 C1003 C189 RG103 21 248 Xa7 M5 0.9 Xa21 Xa23 STSP3 AB9 3.0 Marker from IRRI CDO534 Chen et al. Crop Science, 2000, 40: 239-244 Zhang et al,Plant Breed,2006,125, 600-605
  • 6. Comparison of bacterial resistance to GX325 and KS-1-21 as shown by lesion length among nine genotypes of an F2 population using Tukey-Kramer HSD test Genotype Genes No. xa21xa21xa7xa7 0 xa21xa21Xa7xa7 1 Xa21xa21xa7xa7 1 Xa21Xa21xa7xa7 2 D 4.84 xa21xa21Xa7Xa7 2 D 4.31 Xa21Xa21Xa7xa7 3 E 2.67 Xa21xa21Xa7xa7 2 E Xa21xa21Xa7Xa7 3 Xa21Xa21Xa7Xa7 4 GX325 KS-1-21 Mean A Mean 19.58 A B 12.38 C 6.47 22.071 B 4.20 C 7.96 D 5.05 C 7.16 D E 3.64 2.31 E 3.33 E 2.10 E 3.09 E 1.61 E 2.23
  • 7. MH63(Xa21) and MH63(CK)
  • 8. The locations of Pi-1 and Pi-2 Chr 6 Chr 11 4.5 5.1 5.1 2.2 6.8 9.7 Y2668LA Y6854L R251 RM224 R543a C235 0.4 RG64 0.9 1.2 Pi-2 Pi9, Pigm, R6 AP22 0.3 RG445 Pi-1 RZ536 BC1F2 of Zhenshan 97/BL5 1.5 RZ632(R2123) F5 (CO39/C101A51) RILs
  • 9. Reaction of Pyricularia grisea isolates on the differential near isogenic lines (NILs) (Liu et al, 2003) NILs gene C101LAC C101A51 C104PKT BL1 BL2 BL5 BL3 BL4 BL6 CO39(ck) Zhenshan97 Pi1 Pi2 Pi3 Pi1+Pi3 Pi1+Pi3 Pi1+Pi3 Pi2+Pi3 Pi2+Pi3 Pi1+Pi2+Pi3 no unknown Infection strains 13 11 57 8 7 5 4 5 2 75 46 Resistance frequency (%) 82.7 85.3 24.0 89.3 90.7 93.3 94.7 93.3 97.3 0 38.7
  • 10. Blast natural identify area Yuan’an, Hubei (Altitude:550m) Enshi, Hubei ( Altitude:600m)
  • 11. Fig. 2 The distribution of blast resistance scores of the improved versions of Jin 23B and their hybrids compared with control varieties. a the leaf blast resistance scores of the improved Jin 23B, hybrids, and control at tillering stage. b the leaf blast resistance scores of the improved Jin 23B, hybrids and control at heading stage. c the neck blast resistance scores of the improved Jin 23B, hybrids and control at maturity stage. Jiang et al, Mol Breed: 2012
  • 12. BPH resistance genes Chr 4b Chr 4a Chr 3 Chr 12 RM307 2.2 RM514 RM8213 RM16434 Bph11(t) RM313 Bph12 bph2 Bph10 20.6 15.0 12.5 Bph17 19.1 SG1 2.9 HJ22 RM16717 Bph24 RM463 9.0 5.2 SG6 8.0 RM261 QBph3 RM570 3.6 HJ16 0.7 2.2 10.0 IN762 7.0 Bph14 10.1 J14-12 J23/MS5 QBph4.2 RM16820 6.1 RM16853 Bph27 J18-4 IN187 4.2 HJ12 4 HJ28 J14-8 7.0 2.1 IN156 J18-15 2 Bph15 QBph4.1 0.2 29.3 6.6 Bph20 11.5 4.7 1.0 RM5953 bph16 21.2 0.9 J6-4 RM119 J6-10 26.9 Hu et al, Mol Breed (2012) 29:61–69 Hu et al, PMS, Pest Manag Sci (2013) 69: 802–808 RM252 Bph6 Bph18 Bph9 RM3331 HJ9 RM28625 RM270 Bph21 Bph1
  • 13. Hybrids TN1 Hu7(18) B5(14/15) Y58S/9311 Y58S/9311(18) Y58S/9311(15) Y58S/9311(14) Y58S/9311(15/18) Y58S/9311(14/18) Y58S/9311(14/15) Y58S/9311(14/15/18) GZ63S/9311 GZ63S/9311(18) GZ63S/9311(15) GZ63S/9311(14) GZ63S/9311(15/18) GZ63S/9311(14/18) GZ63S/9311(14/15) GZ63S/9311(14/15/18) 6303S/9311 6303S/9311(18) 6303S/9311(15) 6303S/9311(14) 6303S/9311(15/18) 6303S/9311(14/18) 6303S/9311(14/15) 6303S/9311(14/15/18) Resistance Score The resistance score of pyramided two-line hybrids 9 8 7 6 5 4 3 2 1 0
  • 14. 21 days
  • 15. BPH resistance in field experiment (4 hectares) (2010, Tongcheng, Hubei) GZ63S/9311(ck) GZ63S/9311(Bph14/Bph15)
  • 16. GZ63S/9311(ck) GZ63S/9311(Bph14/Bph15)
  • 17. Whole genome selection breeding R6: blast resistance gene 60K SNPs Background selection
  • 18. Kongyu 131(Pi2) Pi2
  • 19. Acknowledgement Ph D and postgraduate: Hu Jie Yuan Li Gao Guanjun Tu Juming Chen Sheng Jiang Gonghao Zhang Jinfeng Yang Zixian Li Xin Liu Shiping Wu Changjun Staff Rice group Collaboration: IRRI SAGC CAAS Wuhan University Cornell University Supported: 863 plan; National Natural Science Foundation in China and Bill and Melinda Gates Foundation
  • 20. Thank You!