Your SlideShare is downloading. ×
Parameter2 baja berdasarkan komposisi (AA)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Parameter2 baja berdasarkan komposisi (AA)

2,768
views

Published on

Published in: Education, Business, Technology

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,768
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
31
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Jenis Material: Baja AISI 4140 Komposisi Kimia (%)-berat Fn Cooling Rate (oC/s) Tebal (mm) C 0.4 128 20 5 Si 0.4 Mn 0.75 Cu 0 Cr 1.05 Mo 0.23 V 0 W 0 Ni 0 P 0.04 S 0.04 Al 0 As 0 A[C] Ti 0 0.55 Nb 0 Co 0 t8/5: Cooling Time Between 800°C and 500°C (s): Sn 0 N 0 Tempering Temperature (oC): B 0 O 0 Fe 97.11 Rockwell Hardness (C Scale) After Hardening:
  • 2. %N %B %O % TiC H (cm^3/100 gr) 0 0 0 0 0 en 800°C and 500°C (s): 60 200 ale) After Hardening: 63
  • 3. PARAMETER: Grange 1 Equilibrium Temperature for Austenitization Start (oC) 745.8 2 Equilibrium Temperature for End of Austenitization (oC) 788.3 Boratto 3 Austenite No-Recrystallization Temperature (oC) 929.8 Blás 4 Start Temperature of the Transformation Austenite → Ferrite (oC) 677.1 5 Final Temperature of the Transformation Austenite → Ferrite (oC) - Steven 6 Start Temperature of the Bainitic Transformation, Bs (oC) 562.3 Temperature Required for the Formation of 50% of Bainite (oC) 512.3 Temperature Required for the Formation of 100% of Bainite (oC) 442.3 Steven (oF) Start Temperature of the Martensitic Transformation, Ms (oC) 324.1 Temperature Required for the Formation of 10% of Martensite 306.1 Temperature Required for the Formation of 50% of Martensite 239.1 7 Temperature Required for the Formation of 90% of Martensite 139.1 Temperature Required for the Formation of 100% of Martensite -62.9 Sverdlin Start Temperature of the Martensitic Transformation, Ms (oC) 316.5 Dearden 8 Critical Diameter (mm) 1,626 Austenitic 9 Density (kg/dm^3) 8.03 Dearden 10 Equivalent Carbon – H.A.Z. Hardenability 0.81 Critical Cooling Rate at 700°C (oC/s), produces a fully - - Martensitic structure Critical Cooling Time from 800 to 500°C (s) produces a fully - - Martensitic structure DNV 11 Equivalent Carbon – Hydrogen Assisted Cold Cracking 0.76 Cracking Parameter, Pcm (%) - Lorenz 12 Maximum Hardness for a Martensitic-Bainitic HAZ Microstructure 290.4
  • 4. (Vickers, 10 kg Load), after Cooling Spies 13 Brinell Hardness After Hardening and Tempering 589.3 Dearden 14 Maximum Hardness (Vickers), after Welding 770.5 Guthmann 15 Liquidus Temperature of Steels (oC) 1,494 Takeuchi 16 Solidus Temperature of Steels (oC) 1,348 Mizui 17 Weld Interface Cracking Susceptibility during Flash Butt Welding 1.0 18 Tensile Strength After Flash Butt Welding (kg/mm^2) 67.6
  • 5. PERSAMAAN/RUMUS: Andrews Roberts Eldis Park Lee & Lee 744.4 - 721.4 820.2 607.4 771.1 800.2 730.8 - - Choquet Unknown #1 Unknown #2 Ouchi Pickering Shiga 668.7 648.5 704.2 691.2 827.5 726.5 - 477.6 - Suehiro Kirkaldy Lee 269.0 277.6 604.8 ----> (oC) Rowland Andrews (#1) Andrews (#2) Eldis Krauss Grange 162.3 310.0 328.32 329.3 325.04 324.1 324.1 152.3 - - - - - - 115.0 - - - - - - 59.5 - - - - - - -52.7 - - - - - - Payson Carapella Nehrenberg 316.4 315.4 328.1 Ferritic 7.82 IIW Bastien Yurioka Kihara Shinozaki Stout 0.78 0.67 0.73 0.81 0.54 1.0 - 875.4 - - - - - - 849.5 - - - Uwer Mannesmann Graville Hoesch Ito (I) Ito (II) Yurioka 0.55 0.52 0.52 0.52 - - 0.62 - - - - 0.52 0.53 -
  • 6. Shinozaki 255.4
  • 7. KETERANGAN Andrews, valid for low alloy steels with less than 0.6%C. Eldis, for low alloy steels with less than 0.6%C. Park, specifically developed for TRIP steels. Lee, valid for the following alloy range: 0.2% ≤ C ≤ 0.7; Mn ≤ 1.5% ; Si ≤ 0.3%; Ni ≤ 2.8%; Cr ≤ 1.5%; Mo ≤ 0,6% valid under the following alloy range: 0.04% ≤ C ≤ 0.17%; 0.41% ≤ Mn ≤ 1.90; 0.15% ≤ Si ≤ 0.50% ; 0.002% ≤ Al ≤ 0.650; Nb ≤ 0.060%; V ≤ 0.120%; Ti ≤ 0.110%; Cr ≤ 0.67%; Ni ≤ 0.45. Blás, Useful range: 0.024-0.068% C, 0.27-0.39% Mn, 0.004-0.054% Al, 0.000-0.094% Nb, 0.0019-0.0072% N, 1.0- 35°C/s Pickering, Applicable to Plain C Steels. Lee, specifically developed for TRIP steels. Andrews, valid for low alloy steels with less than 0.6%C, 4.9% Mn, 5.0% Cr, 5.0% Ni and 5.4% Mo. Eldis, valid for steels with chemical composition between the following limits: 0.1~0.8% C; 0.35~1.80% Mn; <1.50% Si; <0.90% Mo; <1.50% Cr; <4.50% Ni Shinozaki, Designed Specifically for Flash Butt Welding Mannesmann, deduced for pipeline steels A version of this formula divides V by 10 Graville & Hoesch, deduced for pipeline steels Ito (I), deduced for pipeline steels with C < 0.15% This is the most popular formula for this kind of material. Equation valid under the following conditions: 0.07% ≤ C ≤ 0.22%; 0.40% ≤ Mn ≤ 1.40%; Si ≤ 0.60%; V ≤ 0,12% ;
  • 8. Cr ≤ 1.20%; Ni ≤ 1.20%; Cu ≤ 0.50%, Mo ≤ 0.7%, B ≤ 0,005%. Yurioka, for C-Mn and microalloyed pipeline steels This formula combines Carbon Equivalent equations from IIW and Pcm Spies, valid within the following ranges: HRC: 20~65; C: 0.20~0.54%; Mn: 0.50~1,90%; Si:0.17~1.40%; Cr: 0.03~1.20%; Temp. Tempering: 500~650°C. Shinozaki, at the Welding Interface (No Crack = Zero)
  • 9. Temperatur uji (oC) 30 True Strain 0.2 Strain Rate (s^-1) 10 Grain Size (mikron) 5 Equivalent Carbon 0.51 Pearlite Fraction in Microstructure (%) 63.3 Coiling Temperature (oC) 400 Finishing Temperature (oC) 100 Cooling Rate (oC/s) 20 Plate Thickness (mm) 5 Total Hot Rolling Conventional Strain (%) 20 1 Young Modulus (kg/mm^2) 2 Shear Modulus (kg/mm^2) 3 Steel Hot Strength (kg/mm^2) C-Mn Mild Steels: 1 Yield Strength at 0.2% Real Strain (Mpa) 2 Tensile Strength (Mpa) 3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa) 4 Uniform Elongation, Expressed as Real Strain 5 Total Elongation, Expressed as Real Strain 6 Impact Transition Temperature for 50% Tough Fracture (oC) 7 Strain Ageing After 10 Days at Room Temperature (oC) C-Mn Steels Processed at a Hot Strip Mill 1 Ferrite Grain Size (mikron) 2 Pearlite Fraction Present in Microstructure (%) 3 Pearlite Lamelar Spacing (mikron) 4 Yield Strength at 0.2% Real Strain (Mpa) 5 Tensile Strength (Mpa) 6 Total Elongation (%) Hot/Cold Rolled and Annealed Mild Steel Langenscheid 1 Grain Size of Cold Rolled Strip (mikron), (after 60% CR+Anneal) 2 Grain Size of Cold Rolled Strip (mikron), (after 70% CR+Anneal) 3 Yield Strength at 0.2% Real Strain (Mpa) 4 Yield Elongation (%) 5 Strain Hardening Coefficient Measured during Tension Test Mild Steel, Full Annealed 1 Strain Hardening Coefficient Measured during Tension Test
  • 10. C-Mn Steels with Ferrite-Pearlite Structure (including HSLA Steels) 1 Yield Strength at 0.2% Real Strain (Mpa) 2 Tensile Strength (Mpa) 3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa) 4 Uniform Elongation, Expressed as Real Strain 5 Total Elongation, Expressed as Real Strain 6 Fracture Appearance Transition Temperature (oC) Microalloyed Steels 1 Precipitation Strengthening (Ashby-Orowan Model), Mpa 2 Yield Strength at 0.2% Real Strain (Mpa) Microalloyed Steels 1 Precipitation Strengthening (Mpa), only for steels with V 2 Yield Strength at 0.2% Real Strain (Mpa) 3 Tensile Strength (Mpa) V-Ti-N Steels Processed by Recrystallization Controlled Rolling 1 Neff (%) 2 Ceq (%) 3 Yield Strength at 0.2% Real Strain (Mpa) 4 Tensile Strength (Mpa)
  • 11. Dual Phase Steels 1 Yield Strength (Mpa) 2 Tensile Strength (Mpa) 3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa) 4 Uniform Elongation, Expressed as Real Strain Acicular Ferrite/Low Carbon Bainite Steels 1 Strength Due to Dislocations (Mpa) 2 Burger’s Vector (cm) 3 Yield Strength (Mpa) 4 Tensile Strength (Mpa) 5 Impact Transition Temperature for 50% Tough Fracture (oC) Medium C Steels 1 Yield Strength (Mpa) 2 Tensile Strength (Mpa) 3 Impact Transition Temperature for 50% Tough Fracture (oC) Si Non-Oriented Electrical Steels 1 Lower Yield Strength (Mpa) 2 Tensile Strength (Mpa) 3 Yield Ratio (%)
  • 12. 303 K Elastic Range: Plastic Range: 0.01 mm -3 =α Tselikov Keterangan 31,754 -Valid for carbon, alloy and stainless steels between 20 and 900°C. Wilson 12,213 Misaka 16.6 Pickering 357.5 637.5 718.9 -0.01 0.48 -24.7 133.8 Artigas -Valid under the following conditions: Slab Reheating Temperature: 30.5 1250°C; Tfin: 850~880°C; Tcoil: 615~650°C; 21.2 Final Thickness: 1.8~4.0 mm; C: 0.08~0.18%; Mn: 0.40~1.00%; 0.31 P < 0.020%; S < 0.020%; Si < 0.030%; Al: 0.020~0.050%; N: 0.0030~0.0090%. 8070.6 6377.0 -25.6 Langenscheid -Valid under the following conditions: C: 0.005~0,10%; Mn: 0.40%; 21.6 P < 0.016%; S < 0.026%; Si < 0.010%; Al: < 0.040%; N: 0.0020~0.0040%. 19.9 Cold rolled steel was box annealed at 700°C; 21.9 the time of treatment, including heating of the samples, 4.6 was equal to 32 hours, being followed by furnace cooling. 0.26 Morrison 0.49
  • 13. Pickering 665.5 1538.6 692.8 -0.10 1.1 -40.7 Pickering -The Friction Stress σo (Mpa) value depends on the previous treatment of 283.6 the material, and can be found in the table below: 628.1 70 -Δσppt: Precipitation Strengthening [MPa], for steels with Nb, Ti and/or V defined by the formula below (Mpa). -The effect of solid solution strengthening from another alloy elements solubilized in ferrite can be included in this equation, using the following linear coefficients: -Calculation of the precipitation strengthening of quench-aged carbides and precipitate carbonitrides in Nb, V and Ti steels. -Δσppt can be calculated using a more simplified approach, multiplying the total content of the precipitating alloy by the factor B shown in the table below: Volume Fraction of the Precipitate (%): Mean Planar Intercept Diameter of the Precipitate (mikron): Hodgson 93.2 695.0 770.4 Mitchell 0.000 -For Steels with Al Content over 0.010% and Si Content between 0.25 and 0.35%. 0.78 -Precision of the Formulas: ± 40 MPa. 677.7 923.6
  • 14. Gorni 1412.2 Mean Ferritic Free Path (mikron) 5305.6 Mean Diameter of Martensite Islands (mikron) 5305.6 Fraction of Martensite (%) -58.5 Pickering Burger’s Vector 120.0 Dislocation Density (lines/cm^2) 4.9E-13 Volume Fraction of the Precipitate (%) 766.1 Mean Planar Intercept Diameter of the Precipitate (mikron) 1461.63 Mean Spacing between High Angle Boundaries (“Packet” or Prior - 101.0 Austenite Grain Boundaries), mikron BainiteFerrite Lath Size (mm) Gladman Volume Fraction of Ferrite (%) 289.9 Ferrite Grain Size (mm) 617.1 Pearlite Lamelar Spacing (mm) 1116.4 Pearlite Colony Size (mm) Pearlitic Carbide Lamellar Thickness (mm) Pinoy Ferrite Grain Size (mm) 214.6 -Valid under the following conditions: ULC Steel; Mn: 0.075~0.578%; 344.9 P < 0.109%; S:0.003~0.004%; Si < 0.34%; Al: < 0.432%; 62.9 N: 0.0014~0.0020%; B < 0.0030%. -Cold rolled steel was box annealed at 700°C; the time of treatment, including heating of the samples, was equal to 32 hours, being followed by furnace cooling.
  • 15. 0.3 0.5
  • 16. 10 0.5
  • 17. 0.5 10 60 2 ### 0.1 0.5 20 0.01 0.21 0.03 0.0003 0.01 0 0.03
  • 18. Konstanta, c: 19.21 Parameter Hollomon, P: 9.1 Tempering Temperature (oC): 200 Waktu Tempering (jam): 1.35 ATAU: Waktu Tempering (jam): 1.35 Tempering Temperature (oC): 200
  • 19. Tmin (oC)= 775.1 t (menit)= 60 Pa (oC)= 967.3 l (cm)= 0 Do (cm^2/s)= 0.16 Q (cal/mol)= 62500 t0,05 (jam)= 6.9