Jim Owen, Jr. Substrate Properties:  How to measure and manage them North Willamette  Research and Extension Center
My Approach NUTRIENTS ENVIRONMENT IRRIGATION SUBSTRATE Container
My Approach NUTRIENTS ENVIRONMENT IRRIGATION SUBSTRATE Container
My Approach Engineer a substrate to balance water and air content while providing or retaining plant nutrients
My Approach SUBSTRATE Water : Air “ There is no one fit”
My Approach SUBSTRATE Water : Air SUMMER Water WINTER Air
Approach SUBSTRATE Water : Air SUMMER Water WINTER Air
My Approach STABILITY OVER TIME
<ul><li>Optimal air and water characteristics </li></ul><ul><li>Decomposition / shrinkage during growing season </li></ul>...
<ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity  </li></ul...
<ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity  </li></ul...
<ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity  </li></ul...
<ul><li>Total porosity 50% - 85% </li></ul><ul><ul><li>Air space 10% - 30% </li></ul></ul><ul><ul><li>Container capacity 4...
<ul><li>Gravitational water </li></ul><ul><ul><li>Drainage water </li></ul></ul><ul><li>Hygroscopic water </li></ul><ul><u...
AIR : WATER RELATIONSHIP
<ul><li>Will a given substrate have a greater, equal, or less than container capacity when compared to a field capacity? <...
<ul><li>Will a given substrate have a greater, equal, or less than  container capacity  when compared to a field capacity?...
Water will not move from small pores (fine texture) to large pores (coarse texture) until small pores are saturated. Small...
Sand over clay Water movement Oklahoma State University
Sand over clay Water movement Oklahoma State University
Clay over sand Water movement Oklahoma State University
Clay over sand Water movement Oklahoma State University
Moisture Content Fonteno
<ul><li>Does container shape affect physical properties? </li></ul>SOLIDS WATER AIR TOTAL POROSITY
<ul><li>Effected by container size </li></ul><ul><ul><li>Air space  </li></ul></ul><ul><ul><li>Container capacity </li></u...
SOLIDS WATER AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
29% 29% 29% SOLIDS WATER AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
29% 29% 29% SOLIDS WATER 47% 45% 41% AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
29% 29% 29% SOLIDS WATER 47% 45% 41% AIR 24% 26% 30% TOTAL POROSITY 1 2 3 Bilderback and Fonteno
29% 29% 29% SOLIDS WATER 47% 45% 41% AIR 24% 26% 30% 71% 71% 71% TOTAL POROSITY 1 2 3 Bilderback and Fonteno
Particle Size
Particle Size Capillary Water
Particle Size <ul><li>Stability </li></ul><ul><li>Components “fit” </li></ul><ul><li>Fine particles  </li></ul><ul><ul><li...
Particle Size
Particle Size Fonteno
Particle Size RAW Fonteno
Particle Size EAW WBC
SUBSTRATE COMPONENTS
<ul><li>Primary Component </li></ul><ul><ul><li>Douglas Fir Bark </li></ul></ul><ul><li>Secondary Components </li></ul><ul...
First, I Digress! Bark Inventory Management
Bark Supply <ul><li>Check interior of inventory piles </li></ul><ul><ul><li>Pour thru  </li></ul></ul><ul><ul><li>Saturate...
Bark Supply Bark Arrives Hot! Steam Haze around pile! Spores
Bark Supply <ul><li>Moisture Content- By feel or %weight </li></ul><ul><ul><li>Bark should not be powder dry </li></ul></u...
Bark Supply <ul><li>Mycelium </li></ul><ul><ul><li>Gray color </li></ul></ul><ul><ul><li>Gray band </li></ul></ul><ul><ul>...
Bark Supply <ul><li>Be prepared not to immediately use bark supplies if monitoring suggests problems </li></ul><ul><li>Dev...
Douglas Fir Bark Altland
Douglas Fir Bark AGED FRESH Altland
Douglas Fir Bark Buamscha and Altland
Douglas Fir Bark Water Holding Capacity 27% 37% 45% - 65% Buamscha and Altland 50% 35% 10% - 30%
<ul><li>Volcanic rock </li></ul><ul><ul><li>Bend </li></ul></ul><ul><ul><li>Mazama – Crater lake </li></ul></ul><ul><li>Hi...
<ul><li>Industrial mineral Aggregate </li></ul><ul><ul><li>Chemical absorbent </li></ul></ul><ul><ul><li>Fertilizer carrie...
Mineral aggregate Raw Clay Selection  & Mining Primary Crusher Secondary Crusher Dryer (RVM) Mill Screen Rotary Kiln (LVM)...
Mineral aggregate Zeolite
Mineral aggregate Shulze, D.G., 2002. An introduction to soil mineralogy.  In: Soil Mineralogy with Environmental Applicat...
Mineral Aggregate Montmorillonite Palygorskite Shulze, D.G., 2002. An introduction to soil mineralogy.  In: Soil Mineralog...
Amendment Montmorillonite Palygorskite Surface Area ≈ 90 m 2 /g CEC ≈ 100 cmol c  kg Oil-Dri Corporation of America Clinop...
Amendment Shulze, D.G., 2002. An introduction to soil mineralogy.  In: Soil Mineralogy with Environmental Applications SSS...
Amendment Heating Dehydration Natural  Occurring Low Volatile Material Shulze, D.G., 2002. An introduction to soil mineral...
Peat <ul><li>Canadian peat </li></ul><ul><ul><li>Sphagnum moss peat </li></ul></ul><ul><ul><ul><li>75%  Sphagnum  species ...
Peat <ul><li>Physical </li></ul><ul><ul><li><90% porosity </li></ul></ul><ul><ul><li>Shrink </li></ul></ul><ul><ul><ul><li...
Coir <ul><li>Coir pith </li></ul><ul><ul><li>Mesocarp pithy tissue </li></ul></ul><ul><li>High porosity </li></ul><ul><li>...
Coir
Coir Sri Lanka and Mexico
Coir waste product
Coir 51% 41% Internal 12% 41% Surface PEAT VS COIR Porosity
Coir Wettability! 51% 41% Internal 12% 41% Surface PEAT VS COIR Porosity
Coir <ul><li>Fine particle size </li></ul><ul><li>Monitor salts </li></ul><ul><li>Ca source </li></ul><ul><ul><li>Gypsum <...
 
Compost
Compost <ul><li>Increase water holding capacity </li></ul><ul><li>Reproducible? </li></ul><ul><li>Uniform? </li></ul><ul><...
Compost <ul><li>Increase water holding capacity </li></ul><ul><li>Reproducible? </li></ul><ul><li>Uniform? </li></ul><ul><...
Moisture Content RAW
Pine Bark Mixtures 37%
Pine Bark Mixtures 37% Inc. Air Space Inc. Available water
Clay amended pine bark PRACTICAL APPLICATION
Physical Properties <ul><li>Clay rate  </li></ul><ul><ul><li>0.25 to 0.85 mm LVM </li></ul></ul><ul><ul><li>0% to 24% (by ...
Clay Rate Porometer Results
Clay Rate
Clay Rate
Clay Rate
Clay Rate
Clay Rate Normal Range
Clay Rate
Clay Rate Max. = 12%
Clay Rate
Clay Rate Max. = 11%
Clay Rate
Plastic bag method FIELD QUANTIFICATION
Field Quantification <ul><li>Why? </li></ul><ul><ul><li>Check Bark supply </li></ul></ul><ul><ul><li>Experiment with new c...
Field Quantification Known container volume
Field Quantification Fill, pack, remove excess
Field Quantification Saturate with known volume = total porosity (weight can also be used)
Field Quantification Drain a known volume = air space
Field Quantification Container Capacity = total porosity - air space
Field Quantification Bulk Density = dry weight / container volume
Field Quantification <ul><li>Why </li></ul><ul><ul><li>Check Bark supply </li></ul></ul><ul><ul><li>Experiment with new co...
QUESTIONS
Upcoming SlideShare
Loading in …5
×

Nwrec container workshop i 2006

364
-1

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
364
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Nwrec container workshop i 2006

  1. 1. Jim Owen, Jr. Substrate Properties: How to measure and manage them North Willamette Research and Extension Center
  2. 2. My Approach NUTRIENTS ENVIRONMENT IRRIGATION SUBSTRATE Container
  3. 3. My Approach NUTRIENTS ENVIRONMENT IRRIGATION SUBSTRATE Container
  4. 4. My Approach Engineer a substrate to balance water and air content while providing or retaining plant nutrients
  5. 5. My Approach SUBSTRATE Water : Air “ There is no one fit”
  6. 6. My Approach SUBSTRATE Water : Air SUMMER Water WINTER Air
  7. 7. Approach SUBSTRATE Water : Air SUMMER Water WINTER Air
  8. 8. My Approach STABILITY OVER TIME
  9. 9. <ul><li>Optimal air and water characteristics </li></ul><ul><li>Decomposition / shrinkage during growing season </li></ul><ul><li>Initial vs end of season physical analysis </li></ul><ul><li>Supply and/or retain nutrients </li></ul>Substrate
  10. 10. <ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity </li></ul></ul><ul><ul><ul><li>Syn. water holding capacity </li></ul></ul></ul>Terms
  11. 11. <ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity </li></ul></ul><ul><ul><ul><li>Syn. water holding capacity </li></ul></ul></ul><ul><ul><ul><ul><li>Available water </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Unavailable water </li></ul></ul></ul></ul>Terms
  12. 12. <ul><li>Total porosity (% volume) </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity </li></ul></ul><ul><ul><ul><li>Syn. water holding capacity </li></ul></ul></ul><ul><ul><ul><ul><li>Available water </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Unavailable water </li></ul></ul></ul></ul><ul><li>Bulk density (g cm -3 ) </li></ul>Terms
  13. 13. <ul><li>Total porosity 50% - 85% </li></ul><ul><ul><li>Air space 10% - 30% </li></ul></ul><ul><ul><li>Container capacity 45% - 65% </li></ul></ul><ul><ul><ul><li>Syn. water holding capacity </li></ul></ul></ul><ul><ul><ul><ul><li>Available water 25%- 30% </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Unavailable water 25%- 30% </li></ul></ul></ul></ul><ul><li>Bulk density </li></ul><ul><ul><li>0.2 to 0.5 g cm -3 </li></ul></ul><ul><ul><li>12 to 32 lbs ft -2 </li></ul></ul>Terms
  14. 14. <ul><li>Gravitational water </li></ul><ul><ul><li>Drainage water </li></ul></ul><ul><li>Hygroscopic water </li></ul><ul><ul><li>Adsorbed water </li></ul></ul><ul><li>Capillary water </li></ul><ul><ul><li>Available water </li></ul></ul><ul><ul><li>Unavailable water </li></ul></ul>Terms cont… adsorbed or hygroscopic water capillary water Hillel
  15. 15. AIR : WATER RELATIONSHIP
  16. 16. <ul><li>Will a given substrate have a greater, equal, or less than container capacity when compared to a field capacity? </li></ul>
  17. 17. <ul><li>Will a given substrate have a greater, equal, or less than container capacity when compared to a field capacity? </li></ul><ul><li>WHY? </li></ul>
  18. 18. Water will not move from small pores (fine texture) to large pores (coarse texture) until small pores are saturated. Small pores large pores Small pores (full) large pores Water movement X
  19. 19. Sand over clay Water movement Oklahoma State University
  20. 20. Sand over clay Water movement Oklahoma State University
  21. 21. Clay over sand Water movement Oklahoma State University
  22. 22. Clay over sand Water movement Oklahoma State University
  23. 23. Moisture Content Fonteno
  24. 24. <ul><li>Does container shape affect physical properties? </li></ul>SOLIDS WATER AIR TOTAL POROSITY
  25. 25. <ul><li>Effected by container size </li></ul><ul><ul><li>Air space </li></ul></ul><ul><ul><li>Container capacity </li></ul></ul><ul><ul><ul><li>Available water content </li></ul></ul></ul><ul><li>Unaffected by container size </li></ul><ul><ul><li>Total Porosity </li></ul></ul><ul><ul><li>Unavailable water content </li></ul></ul><ul><ul><li>Bulk density </li></ul></ul>Physical Properties
  26. 26. SOLIDS WATER AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
  27. 27. 29% 29% 29% SOLIDS WATER AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
  28. 28. 29% 29% 29% SOLIDS WATER 47% 45% 41% AIR TOTAL POROSITY 1 2 3 Bilderback and Fonteno
  29. 29. 29% 29% 29% SOLIDS WATER 47% 45% 41% AIR 24% 26% 30% TOTAL POROSITY 1 2 3 Bilderback and Fonteno
  30. 30. 29% 29% 29% SOLIDS WATER 47% 45% 41% AIR 24% 26% 30% 71% 71% 71% TOTAL POROSITY 1 2 3 Bilderback and Fonteno
  31. 31. Particle Size
  32. 32. Particle Size Capillary Water
  33. 33. Particle Size <ul><li>Stability </li></ul><ul><li>Components “fit” </li></ul><ul><li>Fine particles </li></ul><ul><ul><li>< 0.5 mm </li></ul></ul><ul><ul><li>Single component </li></ul></ul><ul><ul><ul><li>≈ 25% by weight </li></ul></ul></ul><ul><ul><li>Multiple components </li></ul></ul><ul><ul><ul><li>< 50% by weight </li></ul></ul></ul>
  34. 34. Particle Size
  35. 35. Particle Size Fonteno
  36. 36. Particle Size RAW Fonteno
  37. 37. Particle Size EAW WBC
  38. 38. SUBSTRATE COMPONENTS
  39. 39. <ul><li>Primary Component </li></ul><ul><ul><li>Douglas Fir Bark </li></ul></ul><ul><li>Secondary Components </li></ul><ul><ul><li>Perlite </li></ul></ul><ul><ul><li>Peat </li></ul></ul><ul><ul><li>Coir </li></ul></ul><ul><li>Tertiary Components </li></ul><ul><ul><li>Minerals </li></ul></ul><ul><ul><li>Compost </li></ul></ul>Northwest Substrate
  40. 40. First, I Digress! Bark Inventory Management
  41. 41. Bark Supply <ul><li>Check interior of inventory piles </li></ul><ul><ul><li>Pour thru </li></ul></ul><ul><ul><li>Saturate media extract </li></ul></ul><ul><li>Desired results </li></ul><ul><ul><li>pH > 3.8 </li></ul></ul><ul><ul><li>EC < 0.5 mmhos </li></ul></ul>
  42. 42. Bark Supply Bark Arrives Hot! Steam Haze around pile! Spores
  43. 43. Bark Supply <ul><li>Moisture Content- By feel or %weight </li></ul><ul><ul><li>Bark should not be powder dry </li></ul></ul><ul><li>Smell; Vinegar smell could be trouble; indicates anaerobic conditions </li></ul><ul><ul><li>Acetic acid lowers pH and extracts salts </li></ul></ul><ul><ul><li>pH can be as low as 2.3 </li></ul></ul><ul><ul><li>EC can be as high as 2.5 mmhos/ cm </li></ul></ul>
  44. 44. Bark Supply <ul><li>Mycelium </li></ul><ul><ul><li>Gray color </li></ul></ul><ul><ul><li>Gray band </li></ul></ul><ul><ul><li>Dry pockets </li></ul></ul><ul><ul><li>Hydrophobioc </li></ul></ul><ul><li>Turn and moisten pile </li></ul>
  45. 45. Bark Supply <ul><li>Be prepared not to immediately use bark supplies if monitoring suggests problems </li></ul><ul><li>Develop an inventory storage area and wet and turn piles 2-3 days before use </li></ul><ul><li>Always check pH and EC before using stored supplies </li></ul><ul><li>Consider blending old inventory and new inventory (50:50) </li></ul>
  46. 46. Douglas Fir Bark Altland
  47. 47. Douglas Fir Bark AGED FRESH Altland
  48. 48. Douglas Fir Bark Buamscha and Altland
  49. 49. Douglas Fir Bark Water Holding Capacity 27% 37% 45% - 65% Buamscha and Altland 50% 35% 10% - 30%
  50. 50. <ul><li>Volcanic rock </li></ul><ul><ul><li>Bend </li></ul></ul><ul><ul><li>Mazama – Crater lake </li></ul></ul><ul><li>High porosity </li></ul><ul><li>Water holding capacity ~30% </li></ul><ul><li>Chemical </li></ul><ul><ul><li>SiO 2 </li></ul></ul><ul><ul><li>Neutral pH </li></ul></ul><ul><ul><li>Base cations and Fe-oxides </li></ul></ul>Pumice Buamscha and Altland
  51. 51. <ul><li>Industrial mineral Aggregate </li></ul><ul><ul><li>Chemical absorbent </li></ul></ul><ul><ul><li>Fertilizer carrier </li></ul></ul><ul><ul><li>Barrier clays </li></ul></ul>Murray, 2000.
  52. 52. Mineral aggregate Raw Clay Selection & Mining Primary Crusher Secondary Crusher Dryer (RVM) Mill Screen Rotary Kiln (LVM) Oil-Dri Corporation of America Bag or Bulk ≤ 800 °C ≈ 120°C
  53. 53. Mineral aggregate Zeolite
  54. 54. Mineral aggregate Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
  55. 55. Mineral Aggregate Montmorillonite Palygorskite Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
  56. 56. Amendment Montmorillonite Palygorskite Surface Area ≈ 90 m 2 /g CEC ≈ 100 cmol c kg Oil-Dri Corporation of America Clinoptilolite Surface Area ≈ 40 m 2 /g CEC ≈ 250 cmol c kg Surface Area ≈ 120 m 2 /g CEC ≈ 20 cmol c kg
  57. 57. Amendment Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7. Heating Dehydration Natural Occurring Low Volatile Material Palygorskite and Zeolite
  58. 58. Amendment Heating Dehydration Natural Occurring Low Volatile Material Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7. Montmorillonite
  59. 59. Peat <ul><li>Canadian peat </li></ul><ul><ul><li>Sphagnum moss peat </li></ul></ul><ul><ul><ul><li>75% Sphagnum species </li></ul></ul></ul><ul><ul><ul><li>90% organic matter </li></ul></ul></ul><ul><ul><li>Degree of composition </li></ul></ul><ul><ul><ul><li>light > dark > black </li></ul></ul></ul>British Bryological Society http://www.mosserlee.com
  60. 60. Peat <ul><li>Physical </li></ul><ul><ul><li><90% porosity </li></ul></ul><ul><ul><li>Shrink </li></ul></ul><ul><ul><ul><li>Water content </li></ul></ul></ul><ul><ul><ul><li>Time </li></ul></ul></ul><ul><li>Chemical </li></ul><ul><ul><li>pH ≈ 4 </li></ul></ul><ul><ul><li>CEC </li></ul></ul>Sun Terra
  61. 61. Coir <ul><li>Coir pith </li></ul><ul><ul><li>Mesocarp pithy tissue </li></ul></ul><ul><li>High porosity </li></ul><ul><li>Low Easily Available water </li></ul><ul><li>Chemical </li></ul><ul><ul><li>pH 7 </li></ul></ul><ul><ul><li>CEC </li></ul></ul><ul><ul><li>P and K </li></ul></ul>
  62. 62. Coir
  63. 63. Coir Sri Lanka and Mexico
  64. 64. Coir waste product
  65. 65. Coir 51% 41% Internal 12% 41% Surface PEAT VS COIR Porosity
  66. 66. Coir Wettability! 51% 41% Internal 12% 41% Surface PEAT VS COIR Porosity
  67. 67. Coir <ul><li>Fine particle size </li></ul><ul><li>Monitor salts </li></ul><ul><li>Ca source </li></ul><ul><ul><li>Gypsum </li></ul></ul>
  68. 69. Compost
  69. 70. Compost <ul><li>Increase water holding capacity </li></ul><ul><li>Reproducible? </li></ul><ul><li>Uniform? </li></ul><ul><li>Stable? </li></ul><ul><li>Salt concentration </li></ul><ul><ul><li>Poultry </li></ul></ul><ul><li>Metals </li></ul><ul><ul><li>Swine (Zn) </li></ul></ul>
  70. 71. Compost <ul><li>Increase water holding capacity </li></ul><ul><li>Reproducible? </li></ul><ul><li>Uniform? </li></ul><ul><li>Stable? </li></ul><ul><li>Salt concentration </li></ul><ul><ul><li>Poultry </li></ul></ul><ul><li>Metals </li></ul><ul><ul><li>Swine (Zn) </li></ul></ul>
  71. 72. Moisture Content RAW
  72. 73. Pine Bark Mixtures 37%
  73. 74. Pine Bark Mixtures 37% Inc. Air Space Inc. Available water
  74. 75. Clay amended pine bark PRACTICAL APPLICATION
  75. 76. Physical Properties <ul><li>Clay rate </li></ul><ul><ul><li>0.25 to 0.85 mm LVM </li></ul></ul><ul><ul><li>0% to 24% (by vol.) </li></ul></ul><ul><ul><ul><li>4% increments </li></ul></ul></ul><ul><li>Poromoter </li></ul><ul><li>15-bar extraction </li></ul>
  76. 77. Clay Rate Porometer Results
  77. 78. Clay Rate
  78. 79. Clay Rate
  79. 80. Clay Rate
  80. 81. Clay Rate
  81. 82. Clay Rate Normal Range
  82. 83. Clay Rate
  83. 84. Clay Rate Max. = 12%
  84. 85. Clay Rate
  85. 86. Clay Rate Max. = 11%
  86. 87. Clay Rate
  87. 88. Plastic bag method FIELD QUANTIFICATION
  88. 89. Field Quantification <ul><li>Why? </li></ul><ul><ul><li>Check Bark supply </li></ul></ul><ul><ul><li>Experiment with new components </li></ul></ul><ul><ul><li>Affect of how you pot </li></ul></ul>
  89. 90. Field Quantification Known container volume
  90. 91. Field Quantification Fill, pack, remove excess
  91. 92. Field Quantification Saturate with known volume = total porosity (weight can also be used)
  92. 93. Field Quantification Drain a known volume = air space
  93. 94. Field Quantification Container Capacity = total porosity - air space
  94. 95. Field Quantification Bulk Density = dry weight / container volume
  95. 96. Field Quantification <ul><li>Why </li></ul><ul><ul><li>Check Bark supply </li></ul></ul><ul><ul><li>Experiment with new components </li></ul></ul><ul><ul><li>Affect of how you pot </li></ul></ul>
  96. 97. QUESTIONS
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×