Your SlideShare is downloading. ×
0
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Linear equations rev
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Linear equations rev

3,092

Published on

Published in: Education, Technology
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,092
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
114
Comments
0
Likes
4
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Linear Equations in Two Variables Digital Lesson
  • 2. Linear Equations Equations of the form ax + by = c are called linear equations in two variables . The point (0,4) is the y -intercept . The point (6,0) is the x -intercept . x y 2 -2 This is the graph of the equation 2 x + 3 y = 12. (0,4) (6,0)
  • 3. Slope of a Line The slope of a line is a number, m , which measures its steepness. m = 0 m = 2 m is undefined y x 2 -2 m = 1 2 m = - 1 4
  • 4. Slope Formula The slope of the line passing through the two points ( x 1 , y 1 ) and ( x 2 , y 2 ) is given by the formula The slope is the change in y divided by the change in x as we move along the line from ( x 1 , y 1 ) to ( x 2 , y 2 ). x y x 2 – x 1 y 2 – y 1 change in y change in x y 2 – y 1 x 2 – x 1 m = , ( x 1 ≠ x 2 ). ( x 1 , y 1 ) ( x 2 , y 2 )
  • 5. Example: Find Slope Example : Find the slope of the line passing through the points (2 , 3) and (4, 5). Use the slope formula with x 1 = 2 , y 1 = 3 , x 2 = 4 , and y 2 = 5 . 2 2 (2, 3) (4, 5) y 2 – y 1 x 2 – x 1 m = 5 – 3 4 – 2 = = 2 2 = 1 x y
  • 6. Slope-Intercept Form A linear equation written in the form y = mx + b is in slope-intercept form . To graph an equation in slope-intercept form : 1. Write the equation in the form y = mx + b. Identify m and b . The slope is m and the y-intercept is (0, b ). 2. Plot the y -intercept (0, b ). 3. Starting at the y -intercept, find another point on the line using the slope. 4. Draw the line through (0, b ) and the point located using the slope.
  • 7. Example: y = mx + b 1 Example : Graph the line y = 2 x – 4. 2. Plot the y -intercept, (0, - 4).
    • The equation y = 2 x – 4 is in the slope-intercept form. So, m = 2 and b = - 4.
    3. The slope is 2. The point (1, -2) is also on the line. 4. Start at the point (0, 4). Count 1 unit to the right and 2 units up to locate a second point on the line. 2 5. Draw the line through (0, 4) and (1, -2). 1 = change in y change in x m = 2 x y (0, - 4) (1, -2)
  • 8. Point-Slope Form A linear equation written in the form y – y 1 = m ( x – x 1 ) is in point-slope form . The graph of this equation is a line with slope m passing through the point ( x 1 , y 1 ) . Example : The graph of the equation y – 3 = - ( x – 4) is a line of slope m = - passing through the point (4, 3). 1 2 1 2 (4, 3) m = - 1 2 x y 4 4 8 8
  • 9. Example: Point-Slope Form Example : Write the slope-intercept form for the equation of the line through the point (-2, 5) with a slope of 3. Use the point-slope form, y – y 1 = m ( x – x 1 ) , with m = 3 and ( x 1 , y 1 ) = (-2, 5). y – y 1 = m ( x – x 1 ) Point-slope form y – y 1 = 3 ( x – x 1 ) Let m = 3. y – 5 = 3 ( x – ( -2 )) Let ( x 1 , y 1 ) = (-2, 5) . y – 5 = 3( x + 2) Simplify. y = 3 x + 11 Slope-intercept form
  • 10. Example: Slope-Intercept Form Example : Write the slope-intercept form for the equation of the line through the points (4, 3) and (-2, 5). y – y 1 = m ( x – x 1 ) Point-slope form Slope-intercept form y = - x + 13 3 1 3 2 1 5 – 3 -2 – 4 = - 6 = - 3 Calculate the slope. m = Use m = - and the point (4, 3). y – 3 = - ( x – 4 ) 1 3
  • 11. Example: Parallel Lines Two lines are parallel if they have the same slope. If the lines have slopes m 1 and m 2 , then the lines are parallel whenever m 1 = m 2 . Example : The lines y = 2 x – 3 and y = 2 x + 4 have slopes m 1 = 2 and m 2 = 2. The lines are parallel. x y y = 2 x + 4 (0, 4) y = 2 x – 3 (0, -3)
  • 12. Example: Perpendicular Lines Two lines are perpendicular if their slopes are negative reciprocals of each other. If two lines have slopes m 1 and m 2 , then the lines are perpendicular whenever The lines are perpendicular. or m 1 m 2 = -1. y = 3 x – 1 (0, 4) (0, -1) 1 m 1 m 2 = - x y y = - x + 4 1 3 Example : The lines y = 3 x – 1 and y = - x + 4 have slopes m 1 = 3 and m 2 = - . 1 3 1 3

×