SlideShare a Scribd company logo
1 of 11
Download to read offline
3/16/2013
1
ME‐205 : Element of machine dynamics and design
Dr. Muhammad Wasif
Assistant  Professor – I.M.D.
Ph.D. (CAD/CAM – Canada), M.Engg. (Mfg. Engg. – NEDUET), 
B.E. (Mech. Engg. – NED UET). Member ASME and PEC
Room : 1st on LHS of main corridor, ground floor – IM Building
Machine dynamics : Gear Trains
1
Spur Gear Tooth Profile
2ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• Two types of spur gear tooth‐profiles are used;
– Cycloidal profile,
– Involute profile
• Velocity ratio in involute gear does not change
with slight misalignments (center distance).
• The pressure angle, from the start of the
engagement of teeth to the end of the
engagement, remains constant which results in
smooth running and less wear of gears.
• The face and flank of involute teeth are generated
by a single curve whereas in cycloidal gears,
double curves (i.e. epicycloid and hypocycloid).
• Involute profile gears are Easy to machine.
Cycloidal profile
Involute profile
3/16/2013
2
Spur Gear Tooth Profile
3ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• An involute is one of a class of curves
called ‘conjugate curves’. Involute
profile gears are easy to machine.
• A cord is wound clockwise around the
base circle of gear 1, pulled tight
between points a and b, and wound
counterclockwise around the base
circle of gear 2. If, now, the base circles
are rotated in different directions so as
to keep the cord tight, a point g on the
cord will trace out the involutes cd on
gear 1 and ef on gear 2.
Standard Spur Gears
4ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• Standards are designed by AGMA : American gear manufacturing Association.
• 14.5 composite system : cycloidal curve at face, involute at flank.
• 14.5 full depth involute system : to cut by hobs
• 20 full depth involute system : to cut by hobs
• 20 stub involute system : stronger.
3/16/2013
3
Standard Spur Gears
5ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• The phenomenon when the tip of a tooth undercuts the root on 
its mating gear is known as interference.
Standard Spur Gears
6ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
A 25 pressure angle, 43 tooth spur gear has a module  5, find the 
pitch dia, addendum, dedendum, working depth, total depth, dia of 
addedndum circle, circular pitch.
 = 25 ; N=43; m=5
Sol : 
Pitch dia (dp) = Nm = (43) (5)= 215mm
Addendum  (a) = 1 m = (1)  (5) = 5mm
Dedendum (b) = 1.25m = 1.25(5) = 6.25mm
Working depth (h)  = 2 m = 2(5)       = 10mm
Total depth = 2.25 m = 2.25(5) = 11.25mm
Dia. Of addendum  = dp+2a = 215+2(5)= 225mm
Circular pitch =  m = 15.71mm
3/16/2013
4
Standard Spur Gears
7ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A 57‐tooth spur gear is mesh with a 23‐tooth pinion, The 
module is 5 and pressure angle is 25, what will be the pressure 
angle, if the center distance is increased by 5%.
• Sol :  = 25; Ng=57; Np=23 ; m=5
• rb= rp cos 
• dp= Ng m = (57)(5) = 285mm
• rp=0.5  dp = 142.5mm
• new =cos‐1(
rb
rp,new
)=cos‐1(
rp cos  
rp,new
)= cos‐1(
rp cos 25 
. rp
)=30.32
Gear Trains
8ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A gear train is any collection of two 
or more meshing gears.
• A pair of gear is the simplest form of 
gear train and limited to a ratio 
about 10:1.
• Gear trains have following three 
types;
– Simple
– Compound 
– Epi‐cyclic
3/16/2013
5
Simple Gear Train
9ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A gear train in which each shaft carries one gear.
• A single idle gear may be used to change the direction of
rotation.
Velocity ratio = 
∙ ∙ =
∙ ∙
Velocity ratio =	
T=No. of teeth, N=rpm
Intermediate gears
Driver
Driven
Driver Driven
Simple Gear Train
10ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
From above equation
• For the odd number of intermediate gears, directions of rotation of driver
and driven are same.
• For even number of intermediate gear, direction of rotation of driver and
driven are opposite.
• Intermediate gears act as ideal gear and do not effect the velocity ratio.
• Intermediate gears are used to connect the driver and driven at large center
distance and to attain the desired direction of motion of the driven gear.
Velocity ratio = 
∙ ∙
Intermediate gears
3/16/2013
6
Compound Gear Trains
11ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A gear train in which at least one shaft carries more than one gear.
• Usually used to get the reduction ratio more than 10:1.
• This train may contain, parallel or series‐parallel combination of
gears.
Gear 1 is driver mounted on shaft A.
Gear 2,3 and 4,5 are compound gears mounted
on shaft B and C respectively.
Gear 6 is driven mounted on shaft D.
V.R. = 	
∙ ∙
= ∙ ∙
. .
. .
		 	 	
	 	 	 	
Reverted Gear Trains
12ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A gear compound gear train in which axis of driver and driven
gears are co‐axial.
Since the center distance b/w gear 1,2 and as
well as 3,4 is same, therefore,
∙
	+ 
∙
= 
∙
	+ 
∙
.
.
	
		 	 	
	 	 	
c
3/16/2013
7
Epi‐cyclic Gear Train
13ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• A gear train having at least one planetary gear, connected with a
link to a sun gear is called epi‐cyclic gear train.
• Used to transmit high velocity ratio, with gears of moderate size and
lesser space.
Velocity ratio of epi‐cyclic gear train can be
determined by two methods;
• Algebraic method : Motion of each
element in gear train is related to the
arm. No. of equations depends upon the
number of elements in the train.
/ ; /
Since, gear A and B are meshed directly.
/
/
Epi‐cyclic Gear Train
14ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
• Tabular Method :
Step Condition of meshing Revolution of elements
Arm C
(
Gear A
( )
Gear B
( . )
1. Arm fixed, gear ‘A’ rotates through 1 rev. 0 1
2. Arm fixed, gear ‘A’ rotates through ‘ ’ rev. 0
.
3. Add ‘ ’ motion to all elements
.
3/16/2013
8
Problems
15ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
In a compound gear train, the number of teeth on gear 1, 2, 3, 4, 5
and 6 are 80, 40, 50, 25, 30 and 12 respectively. If gear 1 runs at 200
rpm, find the speed and direction of gear 6.
Sol:
T1=80, T2=40, T3=50, T4=25, T5=30, T6=12; N1=200rpm; N6=?
. .
. .
N6=2000rpm, Direction = opposite
Problems
16ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
The speed ratio of reverted gear train is 12(constant). The module of
gear ‘1’ and ‘2’ is 3.125mm, and gear ‘3’ and ‘4’ is 2.5mm. Find the
number of teeth on each gear. (center distance =200mm)
Sol:
c
NA/ND=12
(NA/NB).(NC/ND)= 120.5 . 120.5 =12
NA/NB =120.5 ;  NC/ND= 120.5
rA+rB=rC+rD=c
mA.TA/2+ mB.TB/2= mC.TC/2+ mD.TD/2=c
0.5mA. (TA+ TB)=0.5mc. (Tc+ TD)=c
0.5.(3.125). (TA+ TB)=200 
3/16/2013
9
Problems
17ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
The speed ratio of reverted gear train is 12(constant). The module of
gear ‘1’ and ‘2’ is 3.125mm, and gear ‘3’ and ‘4’ is 2.5mm. Find the
number of teeth on each gear. (center distance =200mm)
Sol:
c
TA+ TB=200x2/3.125    ‐‐‐‐‐(1)
TC+ TD=200x2/2. 5       ‐‐‐‐‐(2)
NA/NB = TA/TB = 120.5 ‐‐‐‐ (3)
NC/ND = TC/TD = 120.5 ‐‐‐‐ (3)
Solving equations 1 with 3 and 2 with 4
TA=29; TB = 100
TC= 36; TD = 124
Problems
18ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
In an epi‐cyclic gear train, an arm carries two gears ‘A’ and ‘B’ having
36 and 45 teeth respectively. If the arm rotates 150rpm in an
anticlockwise direction about a centre of gear A, which is fixed.
Determine the speed of ‘B’. If gear ‘A’ instead of being fixed makes
300 rpm in clockwise direction. What will be the speed of gear ‘B’.
TA = 36 ; TB = 45 ; NC = 150rpm (A‐CW);
(a) NB =?  When NA = 0 ; (b) NB =?  When NA = 300rpm
Algebraic method
(a)  
/
/
				
	
					 =270 rpm 
(b)  
/
/
				
	
=510 rpm 
3/16/2013
10
Problems
19ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
In an epi‐cyclic gear train, an arm carries two gears ‘A’ and ‘B’ having 36 and 45 teeth
respectively. If the arm rotates 150rpm in an anticlockwise direction about a center
of gear A, which is fixed. Determine the speed of ‘B’. If gear ‘A’ instead of being fixed
makes 300 rpm in clockwise direction. What will be the speed of gear ‘B’.
St
ep
Condition of meshing Revolution of elements
Arm 
C
)
Gear
A
( )
Gear B
(
. )
1. Arm fixed, gear ‘A’ rotates 
through 1 rev.
0 1
2. Arm fixed, gear ‘A’ rotates 
through ‘ ’ rev.
0
.
3. Add ‘ ’ motion to all elements
.
(a)
												0 150
150
.
150
150 150 =270rpm
(b)  
												 300 150
450
.
150 450 =510rpm
Problems
20ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)
In an epi‐cyclic gear train, as shown in the fig. The no. of teeth on gear A, B and C are
48, 24 and 50 respectively. If the arm rotates at 400rpm CW. Find
(a) Speed of gear C when A is fixed, (b) speed of gear A when C is fixed.
(a)
												0 400
400
.
400 400 =16rpm
b .
0 400  416.667
416.667 400 16.667
A               B         C
Arm D
3/16/2013
11
Refernces
21
• R.S. Khurmi, G.K. Gupta, 2005, A text book of machine design, New Dehli‐ India, 
EURASIA PUBLISHING HOUSE.
• R. G. Budynass, J.K. Nisbett, 2005, Shigley’s Mechanical Engineering Deisgn, New 
York –USA, McGraw Hill.
• R.C. Juvinall, K.M. Marshek, 2012, Fundamental of Machine Componenet Design, 
NJ, John Willey and Sons.
• R.L. Norton, 1996, Machine design and integrated approach, USA, Prentice Hall.
• http://www.mae.ncsu.edu/eischen/
• http://www.khkgears.co.jp/en/gear_technology/pdf/gearabc_b.pdfB. J. Hamrock
• http://www.xtek.com/pdf/wp‐gear‐terminology.pdf
• http://www.khkgears.co.jp/en/gear_technology/pdf/gearabc_b.pdf

More Related Content

What's hot

Stress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering systemStress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering systemeSAT Journals
 
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...Design, Analysis and Simulation of Double Wishbone Suspension System for Form...
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...IRJET Journal
 
2 chain drives
2 chain drives2 chain drives
2 chain drivesA-S111
 
Design, fabrication and performance evaluation of melon shelling machine
Design, fabrication and performance evaluation of melon shelling machineDesign, fabrication and performance evaluation of melon shelling machine
Design, fabrication and performance evaluation of melon shelling machineeSAT Journals
 
Finite Element Analysis of Anti-Roll Bar to Optimize the Stiffness of the An...
Finite Element Analysis of Anti-Roll Bar to Optimize the  Stiffness of the An...Finite Element Analysis of Anti-Roll Bar to Optimize the  Stiffness of the An...
Finite Element Analysis of Anti-Roll Bar to Optimize the Stiffness of the An...IJMER
 
Formula SAE vehicle
Formula SAE vehicleFormula SAE vehicle
Formula SAE vehicleAltair
 
Rack and pinion gear design project.
Rack and pinion gear design project.Rack and pinion gear design project.
Rack and pinion gear design project.Waqas Ali Tunio
 
IRJET- Design of Steering System for All Terrain Vehicle
IRJET- Design of Steering System for All Terrain VehicleIRJET- Design of Steering System for All Terrain Vehicle
IRJET- Design of Steering System for All Terrain VehicleIRJET Journal
 
98375_DIRT CRUSADERS
98375_DIRT CRUSADERS98375_DIRT CRUSADERS
98375_DIRT CRUSADERSurbanangel08g
 
Radica RXC chassis report
Radica RXC chassis reportRadica RXC chassis report
Radica RXC chassis reportPulkit Sharma
 
IRJET- Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...
IRJET-  	  Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...IRJET-  	  Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...
IRJET- Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...IRJET Journal
 
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...IRJET Journal
 

What's hot (20)

Stress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering systemStress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering system
 
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...Design, Analysis and Simulation of Double Wishbone Suspension System for Form...
Design, Analysis and Simulation of Double Wishbone Suspension System for Form...
 
Alireza
AlirezaAlireza
Alireza
 
2 chain drives
2 chain drives2 chain drives
2 chain drives
 
Design, fabrication and performance evaluation of melon shelling machine
Design, fabrication and performance evaluation of melon shelling machineDesign, fabrication and performance evaluation of melon shelling machine
Design, fabrication and performance evaluation of melon shelling machine
 
Finite Element Analysis of Anti-Roll Bar to Optimize the Stiffness of the An...
Finite Element Analysis of Anti-Roll Bar to Optimize the  Stiffness of the An...Finite Element Analysis of Anti-Roll Bar to Optimize the  Stiffness of the An...
Finite Element Analysis of Anti-Roll Bar to Optimize the Stiffness of the An...
 
R130402114121
R130402114121R130402114121
R130402114121
 
Chaindrives
ChaindrivesChaindrives
Chaindrives
 
e-Baja Design Report
e-Baja Design Reporte-Baja Design Report
e-Baja Design Report
 
Formula SAE vehicle
Formula SAE vehicleFormula SAE vehicle
Formula SAE vehicle
 
Design Report - ESI 2017
Design Report - ESI 2017Design Report - ESI 2017
Design Report - ESI 2017
 
REPORT - MACH8
REPORT - MACH8REPORT - MACH8
REPORT - MACH8
 
Rack and pinion gear design project.
Rack and pinion gear design project.Rack and pinion gear design project.
Rack and pinion gear design project.
 
BAJA 2014 presentation
BAJA 2014 presentationBAJA 2014 presentation
BAJA 2014 presentation
 
IRJET- Design of Steering System for All Terrain Vehicle
IRJET- Design of Steering System for All Terrain VehicleIRJET- Design of Steering System for All Terrain Vehicle
IRJET- Design of Steering System for All Terrain Vehicle
 
98375_DIRT CRUSADERS
98375_DIRT CRUSADERS98375_DIRT CRUSADERS
98375_DIRT CRUSADERS
 
Radica RXC chassis report
Radica RXC chassis reportRadica RXC chassis report
Radica RXC chassis report
 
IRJET- Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...
IRJET-  	  Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...IRJET-  	  Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...
IRJET- Design & Manufacturing of Double Wishbone Suspension and Wheel Ass...
 
BAJA SAE INDIA 2015
BAJA SAE INDIA 2015BAJA SAE INDIA 2015
BAJA SAE INDIA 2015
 
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...
IRJET- Study on Influence of Design Parameters of Drum’s Metal Rubber Isolati...
 

Viewers also liked (7)

Machine dynamics l1
Machine dynamics l1Machine dynamics l1
Machine dynamics l1
 
Machine dynamics
Machine dynamicsMachine dynamics
Machine dynamics
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Dom lab manual new
Dom lab manual newDom lab manual new
Dom lab manual new
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Gear train
Gear trainGear train
Gear train
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 

Similar to ME-205 Machine Dynamics and Design Lecture Notes

Spur Gear Design by Using MATLAB Code
Spur Gear Design by Using MATLAB CodeSpur Gear Design by Using MATLAB Code
Spur Gear Design by Using MATLAB CodeIJSRD
 
RELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXRELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXIJERA Editor
 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear boxAMIR92671
 
IRJET- Parametric Stress Analysis of Helical Gear using Fea
IRJET- Parametric Stress Analysis of Helical Gear using FeaIRJET- Parametric Stress Analysis of Helical Gear using Fea
IRJET- Parametric Stress Analysis of Helical Gear using FeaIRJET Journal
 
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...IJERA Editor
 
Finite Element Analysis of Shaft of Centrifugal Pump
Finite Element Analysis of Shaft of Centrifugal PumpFinite Element Analysis of Shaft of Centrifugal Pump
Finite Element Analysis of Shaft of Centrifugal PumpIOSR Journals
 
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEAR
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEARANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEAR
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEARijiert bestjournal
 
External geneva mechanism mini project report
External geneva mechanism mini project reportExternal geneva mechanism mini project report
External geneva mechanism mini project reportHamza Nawaz
 
Design of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxDesign of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxIJERA Editor
 
Design and Optimization of Steering System
Design and Optimization of Steering SystemDesign and Optimization of Steering System
Design and Optimization of Steering SystemIRJET Journal
 
Tripod Steering for Better Maneuverability of Quad-Bike
Tripod Steering for Better Maneuverability of Quad-BikeTripod Steering for Better Maneuverability of Quad-Bike
Tripod Steering for Better Maneuverability of Quad-BikeIRJET Journal
 

Similar to ME-205 Machine Dynamics and Design Lecture Notes (20)

2023.pptx
2023.pptx2023.pptx
2023.pptx
 
Spur Gear Design by Using MATLAB Code
Spur Gear Design by Using MATLAB CodeSpur Gear Design by Using MATLAB Code
Spur Gear Design by Using MATLAB Code
 
Ijmet 06 10_013
Ijmet 06 10_013Ijmet 06 10_013
Ijmet 06 10_013
 
[IJET V2I3P8] Authors: Pravin B. Sonawane, P.G.Damle
[IJET V2I3P8] Authors: Pravin B. Sonawane, P.G.Damle[IJET V2I3P8] Authors: Pravin B. Sonawane, P.G.Damle
[IJET V2I3P8] Authors: Pravin B. Sonawane, P.G.Damle
 
RELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOXRELIABILITY BASED DESIGN OF A GEAR BOX
RELIABILITY BASED DESIGN OF A GEAR BOX
 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear box
 
I012326065
I012326065I012326065
I012326065
 
IRJET- Parametric Stress Analysis of Helical Gear using Fea
IRJET- Parametric Stress Analysis of Helical Gear using FeaIRJET- Parametric Stress Analysis of Helical Gear using Fea
IRJET- Parametric Stress Analysis of Helical Gear using Fea
 
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...
Improving the Hydraulic Efficiency of Centrifugal Pumps through Computational...
 
Emm3104 chapter 2 part2
Emm3104 chapter 2  part2Emm3104 chapter 2  part2
Emm3104 chapter 2 part2
 
Finite Element Analysis of Shaft of Centrifugal Pump
Finite Element Analysis of Shaft of Centrifugal PumpFinite Element Analysis of Shaft of Centrifugal Pump
Finite Element Analysis of Shaft of Centrifugal Pump
 
32-IJRERD-B412.pdf
32-IJRERD-B412.pdf32-IJRERD-B412.pdf
32-IJRERD-B412.pdf
 
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEAR
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEARANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEAR
ANALYSIS OF STRESS RELIEVING FEATURES OF ASYMMETRIC SPUR GEAR
 
External geneva mechanism mini project report
External geneva mechanism mini project reportExternal geneva mechanism mini project report
External geneva mechanism mini project report
 
Design of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage GearboxDesign of a Multispeed Multistage Gearbox
Design of a Multispeed Multistage Gearbox
 
Design and Optimization of Steering System
Design and Optimization of Steering SystemDesign and Optimization of Steering System
Design and Optimization of Steering System
 
Tripod Steering for Better Maneuverability of Quad-Bike
Tripod Steering for Better Maneuverability of Quad-BikeTripod Steering for Better Maneuverability of Quad-Bike
Tripod Steering for Better Maneuverability of Quad-Bike
 
welding
weldingwelding
welding
 
Unit 2b Power Transmission by Belts
Unit 2b Power Transmission by BeltsUnit 2b Power Transmission by Belts
Unit 2b Power Transmission by Belts
 
Emm3104 chapter 3
Emm3104 chapter 3Emm3104 chapter 3
Emm3104 chapter 3
 

Recently uploaded

Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organizationchnrketan
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 

Recently uploaded (20)

Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organization
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 

ME-205 Machine Dynamics and Design Lecture Notes

  • 1. 3/16/2013 1 ME‐205 : Element of machine dynamics and design Dr. Muhammad Wasif Assistant  Professor – I.M.D. Ph.D. (CAD/CAM – Canada), M.Engg. (Mfg. Engg. – NEDUET),  B.E. (Mech. Engg. – NED UET). Member ASME and PEC Room : 1st on LHS of main corridor, ground floor – IM Building Machine dynamics : Gear Trains 1 Spur Gear Tooth Profile 2ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • Two types of spur gear tooth‐profiles are used; – Cycloidal profile, – Involute profile • Velocity ratio in involute gear does not change with slight misalignments (center distance). • The pressure angle, from the start of the engagement of teeth to the end of the engagement, remains constant which results in smooth running and less wear of gears. • The face and flank of involute teeth are generated by a single curve whereas in cycloidal gears, double curves (i.e. epicycloid and hypocycloid). • Involute profile gears are Easy to machine. Cycloidal profile Involute profile
  • 2. 3/16/2013 2 Spur Gear Tooth Profile 3ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • An involute is one of a class of curves called ‘conjugate curves’. Involute profile gears are easy to machine. • A cord is wound clockwise around the base circle of gear 1, pulled tight between points a and b, and wound counterclockwise around the base circle of gear 2. If, now, the base circles are rotated in different directions so as to keep the cord tight, a point g on the cord will trace out the involutes cd on gear 1 and ef on gear 2. Standard Spur Gears 4ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • Standards are designed by AGMA : American gear manufacturing Association. • 14.5 composite system : cycloidal curve at face, involute at flank. • 14.5 full depth involute system : to cut by hobs • 20 full depth involute system : to cut by hobs • 20 stub involute system : stronger.
  • 3. 3/16/2013 3 Standard Spur Gears 5ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • The phenomenon when the tip of a tooth undercuts the root on  its mating gear is known as interference. Standard Spur Gears 6ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) A 25 pressure angle, 43 tooth spur gear has a module  5, find the  pitch dia, addendum, dedendum, working depth, total depth, dia of  addedndum circle, circular pitch.  = 25 ; N=43; m=5 Sol :  Pitch dia (dp) = Nm = (43) (5)= 215mm Addendum  (a) = 1 m = (1)  (5) = 5mm Dedendum (b) = 1.25m = 1.25(5) = 6.25mm Working depth (h)  = 2 m = 2(5)       = 10mm Total depth = 2.25 m = 2.25(5) = 11.25mm Dia. Of addendum  = dp+2a = 215+2(5)= 225mm Circular pitch =  m = 15.71mm
  • 4. 3/16/2013 4 Standard Spur Gears 7ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A 57‐tooth spur gear is mesh with a 23‐tooth pinion, The  module is 5 and pressure angle is 25, what will be the pressure  angle, if the center distance is increased by 5%. • Sol :  = 25; Ng=57; Np=23 ; m=5 • rb= rp cos  • dp= Ng m = (57)(5) = 285mm • rp=0.5  dp = 142.5mm • new =cos‐1( rb rp,new )=cos‐1( rp cos   rp,new )= cos‐1( rp cos 25  . rp )=30.32 Gear Trains 8ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A gear train is any collection of two  or more meshing gears. • A pair of gear is the simplest form of  gear train and limited to a ratio  about 10:1. • Gear trains have following three  types; – Simple – Compound  – Epi‐cyclic
  • 5. 3/16/2013 5 Simple Gear Train 9ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A gear train in which each shaft carries one gear. • A single idle gear may be used to change the direction of rotation. Velocity ratio =  ∙ ∙ = ∙ ∙ Velocity ratio = T=No. of teeth, N=rpm Intermediate gears Driver Driven Driver Driven Simple Gear Train 10ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) From above equation • For the odd number of intermediate gears, directions of rotation of driver and driven are same. • For even number of intermediate gear, direction of rotation of driver and driven are opposite. • Intermediate gears act as ideal gear and do not effect the velocity ratio. • Intermediate gears are used to connect the driver and driven at large center distance and to attain the desired direction of motion of the driven gear. Velocity ratio =  ∙ ∙ Intermediate gears
  • 6. 3/16/2013 6 Compound Gear Trains 11ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A gear train in which at least one shaft carries more than one gear. • Usually used to get the reduction ratio more than 10:1. • This train may contain, parallel or series‐parallel combination of gears. Gear 1 is driver mounted on shaft A. Gear 2,3 and 4,5 are compound gears mounted on shaft B and C respectively. Gear 6 is driven mounted on shaft D. V.R. = ∙ ∙ = ∙ ∙ . . . . Reverted Gear Trains 12ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A gear compound gear train in which axis of driver and driven gears are co‐axial. Since the center distance b/w gear 1,2 and as well as 3,4 is same, therefore, ∙ +  ∙ =  ∙ +  ∙ . . c
  • 7. 3/16/2013 7 Epi‐cyclic Gear Train 13ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • A gear train having at least one planetary gear, connected with a link to a sun gear is called epi‐cyclic gear train. • Used to transmit high velocity ratio, with gears of moderate size and lesser space. Velocity ratio of epi‐cyclic gear train can be determined by two methods; • Algebraic method : Motion of each element in gear train is related to the arm. No. of equations depends upon the number of elements in the train. / ; / Since, gear A and B are meshed directly. / / Epi‐cyclic Gear Train 14ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) • Tabular Method : Step Condition of meshing Revolution of elements Arm C ( Gear A ( ) Gear B ( . ) 1. Arm fixed, gear ‘A’ rotates through 1 rev. 0 1 2. Arm fixed, gear ‘A’ rotates through ‘ ’ rev. 0 . 3. Add ‘ ’ motion to all elements .
  • 8. 3/16/2013 8 Problems 15ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) In a compound gear train, the number of teeth on gear 1, 2, 3, 4, 5 and 6 are 80, 40, 50, 25, 30 and 12 respectively. If gear 1 runs at 200 rpm, find the speed and direction of gear 6. Sol: T1=80, T2=40, T3=50, T4=25, T5=30, T6=12; N1=200rpm; N6=? . . . . N6=2000rpm, Direction = opposite Problems 16ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) The speed ratio of reverted gear train is 12(constant). The module of gear ‘1’ and ‘2’ is 3.125mm, and gear ‘3’ and ‘4’ is 2.5mm. Find the number of teeth on each gear. (center distance =200mm) Sol: c NA/ND=12 (NA/NB).(NC/ND)= 120.5 . 120.5 =12 NA/NB =120.5 ;  NC/ND= 120.5 rA+rB=rC+rD=c mA.TA/2+ mB.TB/2= mC.TC/2+ mD.TD/2=c 0.5mA. (TA+ TB)=0.5mc. (Tc+ TD)=c 0.5.(3.125). (TA+ TB)=200 
  • 9. 3/16/2013 9 Problems 17ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) The speed ratio of reverted gear train is 12(constant). The module of gear ‘1’ and ‘2’ is 3.125mm, and gear ‘3’ and ‘4’ is 2.5mm. Find the number of teeth on each gear. (center distance =200mm) Sol: c TA+ TB=200x2/3.125    ‐‐‐‐‐(1) TC+ TD=200x2/2. 5       ‐‐‐‐‐(2) NA/NB = TA/TB = 120.5 ‐‐‐‐ (3) NC/ND = TC/TD = 120.5 ‐‐‐‐ (3) Solving equations 1 with 3 and 2 with 4 TA=29; TB = 100 TC= 36; TD = 124 Problems 18ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) In an epi‐cyclic gear train, an arm carries two gears ‘A’ and ‘B’ having 36 and 45 teeth respectively. If the arm rotates 150rpm in an anticlockwise direction about a centre of gear A, which is fixed. Determine the speed of ‘B’. If gear ‘A’ instead of being fixed makes 300 rpm in clockwise direction. What will be the speed of gear ‘B’. TA = 36 ; TB = 45 ; NC = 150rpm (A‐CW); (a) NB =?  When NA = 0 ; (b) NB =?  When NA = 300rpm Algebraic method (a)   / /  =270 rpm  (b)   / /  =510 rpm 
  • 10. 3/16/2013 10 Problems 19ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) In an epi‐cyclic gear train, an arm carries two gears ‘A’ and ‘B’ having 36 and 45 teeth respectively. If the arm rotates 150rpm in an anticlockwise direction about a center of gear A, which is fixed. Determine the speed of ‘B’. If gear ‘A’ instead of being fixed makes 300 rpm in clockwise direction. What will be the speed of gear ‘B’. St ep Condition of meshing Revolution of elements Arm  C ) Gear A ( ) Gear B ( . ) 1. Arm fixed, gear ‘A’ rotates  through 1 rev. 0 1 2. Arm fixed, gear ‘A’ rotates  through ‘ ’ rev. 0 . 3. Add ‘ ’ motion to all elements . (a) 0 150 150 . 150 150 150 =270rpm (b)   300 150 450 . 150 450 =510rpm Problems 20ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET) In an epi‐cyclic gear train, as shown in the fig. The no. of teeth on gear A, B and C are 48, 24 and 50 respectively. If the arm rotates at 400rpm CW. Find (a) Speed of gear C when A is fixed, (b) speed of gear A when C is fixed. (a) 0 400 400 . 400 400 =16rpm b . 0 400  416.667 416.667 400 16.667 A               B         C Arm D
  • 11. 3/16/2013 11 Refernces 21 • R.S. Khurmi, G.K. Gupta, 2005, A text book of machine design, New Dehli‐ India,  EURASIA PUBLISHING HOUSE. • R. G. Budynass, J.K. Nisbett, 2005, Shigley’s Mechanical Engineering Deisgn, New  York –USA, McGraw Hill. • R.C. Juvinall, K.M. Marshek, 2012, Fundamental of Machine Componenet Design,  NJ, John Willey and Sons. • R.L. Norton, 1996, Machine design and integrated approach, USA, Prentice Hall. • http://www.mae.ncsu.edu/eischen/ • http://www.khkgears.co.jp/en/gear_technology/pdf/gearabc_b.pdfB. J. Hamrock • http://www.xtek.com/pdf/wp‐gear‐terminology.pdf • http://www.khkgears.co.jp/en/gear_technology/pdf/gearabc_b.pdf