Your SlideShare is downloading. ×
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Polinomios interpolantes
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Polinomios interpolantes

1,584

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,584
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. PolinomiosInterpolantes Isaac Moreno 20.652.646
  • 2. El Problema De La Interpolación Muchas veces, de una función sólo conocemos un conjunto de valores. Esto puede suceder, por ejemplo, porque son los resultados de un experimento gobernado por una ley que desconocemos. Si queremos calcular el valor de la función para una abscisa diferente de las conocidas, debemos utilizar otra función que la aproxime y, naturalmente, el valor que obtengamos será una aproximación del valor real. También puede suceder que sepamos la expresión analítica de la función, pero sea lo suficientemente complicada como para calcular aproximaciones a los valores de la función a partir de otros ya conocidos. Existen varias formas de hacer esto, pero la más sencilla y una de las más utilizadas es la interpolación, que consiste en construir una función que pase por los valores conocidos (llamados polos) y utilizar ésta como aproximación de la función primitiva. Si se utilizan polinomios como funciones de aproximación, hablamos de interpolación polinómica. Si la abscisa para la que queremos encontrar un valor aproximado de la función se encuentra fuera del mayor intervalo definido por las abscisas de los polos, se dice que estamos haciendo extrapolación.
  • 3. Tabla De Diferencias Dados los valores de una función desconocida correspondiente a dichos valores de x, ¿cuál es el comportamiento de la función?; el propósito es determinar dicho comportamiento, con las muestras de los pares de datos (x, f(x)); se encontrará un polinomio que satisfaga un conjunto de puntos seleccionados (xi, f(xi)) donde los valores que aporten el Polinomio y la función se comportan casi de la misma manera, en el intervalo en cuestión. Si se desea encontrar un polinomio que pase a través de los mismos puntos que la función desconocida se puede establecer un sistema de ecuaciones, pero este proceso es un poco engorroso; resulta conveniente arreglar los datos en una tabla con los valores de x en forma ascendente. Además de las columnas para x y para f(x) se deberán tabular las diferencias de los valores funcionales. Cada una de las columnas de la derecha de f(x), se estima o determina calculando las diferencias entre los valores de la columna a su izquierda.
  • 4. La siguiente tabla es una tabla típica de diferenciasx f(x) D f(x) D 2f(x) D 3f(x)0.0 0.00 0.2030.2 0.203 0.017 0.220 0.0240.4 0.423 0.041
  • 5. Polinomio Interpolante de Newton- Gregory Cuando la función ha sido tabulada, se comporta como un polinomio, se le puede aproximar al polinomio que se le parece. Una forma sencilla de escribir un polinomio que pasa por un conjunto de puntos equiespaciados, es la fórmula del Polinomio Interpolante de Newton-Gregory (en avance y retroceso). Fórmula de Avance Fórmula de Retroceso La fórmula usa la notación, que es el número de combinaciones de s cosas tomadas de n a la vez, lo que lleva a razones factoriales. Donde s viene dada por: x es el valor a interpolar el polinomio obtenido; Xo viene a ser el punto de partida para seleccionar los valores , que serán seleccionados de la tabla de diferencias, formando una fila diagonal hacia abajo en el caso de la fórmula de avance; en caso de la fórmula de retroceso los valores forman una fila diagonal hacia arriba y a la derecha. Y ha viene a ser la longitud o distancia entre los valores de xi
  • 6. Polinomio Interpolante deGauss Hay una gran variedad de fórmulas de interpolación además del Método de Newton-Gregory, difieren de la forma de las trayectorias tomadas en la tabla de diferencias; Por ejemplo la fórmula del Polinomio Interpolante de Gauss (en avance y retroceso), donde la trayectoria es en forma de Zig-Zag, es decir los valores desde el punto de partida Xo serán seleccionados en forma de zig-zag. En el caso de la fórmula de avance los valores son tomados en forma de zig-zag, iniciando primero hacia abajo, luego hacia arriba, luego hacia abajo, y así sucesivamente. En fórmula de avance los valores son tomados en forma de zig-zag, iniciando primero hacia arriba, luego hacia abajo, luego hacia arriba, y así sucesivamente. A continuación se tiene las fórmulas de avance y retroceso del Polinomio Interpolante de Gauss.
  • 7. Interpolación De Hermite Aquí buscamos un polinomio por pedazos Hn(x) que sea cúbico en cada subintervalo, y que interpole a f(x) y f(x) en los puntos . La función Hn(x) queda determinada en forma única por estas condiciones y su cálculo requiere de la solución de n sistemas lineales de tamaño 4x4 cada uno. La desventaja de la interpolación de Hermite es que requiere de la disponibilidad de los lo cual no es el caso en muchas en muchas aplicaciones.
  • 8. Interpolación Usando Splines Los dos tipos de polinomios por pedazos que hemos discutidos hasta ahora tienen la desventaja de que su segunda derivada no es continua en los puntos de interpolación. Se ha observado que en aplicaciones gráficas, el ojo humano es capaz de detectar discontinuidades en la segundas derivadas de una función, haciendo que los gráficos con este tipo de funciones no luscan uniformes. Esto motiva el uso de los splines que son funciones s(x) continuas por pedazos con las siguientes propiedades:1. s(x) es polinomio cúbico en .2. existen y son continuas en .3. s(x) interpola a la función f en los datos .4. s(x) es continua en el intervalo. Si escribimos , entonces tenemos un total de 4n desconocidas. Las condiciones 2) y 4) nos dan 3(n-1) ecuaciones mientras que de 3) obtenemos n+1 para un total de 4n-3(n-1)-(n+1)=2 grados de libertad. Estos grados de libertad se fijan imponiendo condiciones de frontera adicionales en s(x). Defina . Como s(x) es cúbico en , entonces s"(x) es lineal
  • 9. Polinomio Interpolante De Lagrange Para construir un polinomio de grado menor o igual que n que pase por los n+1 puntos: , donde se supone que si i ¹ j. Este Polinomio Pn es la fórmula del Polinomio Interpolante de Lagrange. Esta fórmula si puede aplicarse independientemente del espaciamiento de la tabla, pero tiene el inconveniente de que no se conoce el grado del polinomio. Como no se conoce, se tiene que determinar iterativamente. Se propone un grado, se realiza la interpolación, se propone el siguiente grado, se vuelve a interpolar y se compara con algún criterio de convergencia, si se cumple terminamos si no, se repite el procedimiento.
  • 10. Diferencias Divididas Y La fórmula General De Newton La diferencia dividida de Newton para la Interpolación de Polinomios está entre los modelos más populares y útiles. Para un polinomio de grado n se requiere de n + 1 puntos. Se usan estos datos para determinar los coeficientes para las diferencias divididas. Partiendo de una tabla de diferencias divididas. Para aplicar el Polinomio de Interpolación por diferencias divididas de Newton, no es necesario que los datos tabulados sean necesariamente equiespaciados o que los valores deban estar ordenados en forma ascendente. El valor que aporta el polinomio de Newton está sujeto a un error
  • 11. Aplicación De Los Métodos NuméricosDe Interpolación En La Resolución De Problemas. Para datos tabulados en forma equiespaciada o no esquiespaciada, a través de una serie de técnicas que antes de la llegada de las computadoras tenían gran utilidad para la interpolación, sin embargo, con fórmulas como las de Newton-Gregory, Gauss, Lagrange, Hermite, Newton, etc., son compatibles con computadoras y debido a las muchas funciones tabulares disponibles, como subrutinas de librerías; dichas fórmulas tienen relevancia en la solución de ecuaciones diferenciales ordinarias. Una gran cantidad de problemas físicos están descritos por ecuaciones diferenciales en las que interviene un operador Laplaciano (la ecuación de Laplace, la ecuación de onda, la ecuación de Schrödinger, etc.). Matemáticamente, estas ecuaciones corresponden a casos particulares del problema de Sturm-Liouville, vale decir, ecuaciones de autovalores para un operador diferencial autoadjunto. No entraremos en los detalles de esta discusión. Sólo diremos que los polinomios de Hermite son un caso particular de soluciones a un problema de Sturm-Liouville. Dichas soluciones forman un conjunto completo y ortogonal, con cierta función de peso. En el caso de familias de polinomios ortogonales, existen relaciones de recurrencia que vinculan cada polinomio con los de grados inmediatamente anterior y posterior, y típicamente poseen una función generatriz, así_ como operadores de subida y de bajada. En los capítulos siguientes encontraremos nuevas familias de polinomios ortogonales. Todos ellos provienen de sendos problemas de Sturm- Liouville, y por tanto no será extraño encontrar las mismas

×