Your SlideShare is downloading. ×
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Quantum dot lasers
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Quantum dot lasers

2,160

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,160
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
128
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Outline
    • Quantum Dots (QD)
      • Confinement Effect
    • Quantum Dot Lasers (QDL)
      • Historical Evolution
      • Predicted Advantages
      • Basic Characteristics
      • Application Requirements
    • Q. Dot Lasers vs. Q. Well Lasers
    • Comparison of different types of QDLs
    • Bottlenecks
    • Breakthroughs
    • Future Directions
    • Conclusion
  • 2. Quantum Dots (QD)
    • Semiconductor nanostructures
      • Size: ~2-10 nm or ~10-50 atoms
      • in diameter
    • Unique tunability
    • Confinement of motion can be created by:
      • Electrostatic potential
        • e.g. in e.g. doping, strain, impurities,
        • external electrodes
      • the presence of an interface between different
      • semiconductor materials
        • e.g. in the case of self-assembled QDs
      • the presence of the semiconductor surface
        • e.g. in the case of a semiconductor nanocrystal
      • or by a combination of these
  • 3. Quantum Confinement Effect
    • E = E q1 + E q2 + E q3, E qn = h 2 (q qn π/d n ) 2 / 2m c
    • Quantization of density of states: (a) bulk (b) quantum well (c) quantum wire (d) QD
  • 4. QD Lasers – Historical Evolution
  • 5. QDL – Predicted Advantages
    • Wavelength of light determined by the energy levels not by bandgap energy:
      • improved performance & increased flexibility to adjust the wavelength
    • Maximum material gain and differential gain
    • Small volume:
      • low power high frequency operation
      • large modulation bandwidth
      • small dynamic chirp
      • small linewidth enhancement factor
      • low threshold current
    • Superior temperature stability of I threshold
    • I threshold (T) = I threshold (T ref ).exp ((T-(T ref ))/ (T 0 ))
      • High T 0  decoupling electron-phonon interaction by increasing the intersubband separation.
      • Undiminished room-temperature performance without external thermal stabilization
    • Suppressed diffusion of non-equilibrium carriers  Reduced leakage
  • 6. QDL – Basic characteristics
    • An active medium to create population inversion by pumping mechanism:
      • photons at some site stimulate emission at other sites while traveling
    • Two reflectors:
      • to reflect the light in phase
      • multipass amplification
    • Components of a laser
    • An energy pump source
      • electric power supply
  • 7. QDL – Basic characteristics
    • An ideal QDL consists of a 3D-array of dots with equal size and shape
    • Surrounded by a higher band-gap material
      • confines the injected carriers.
    • Embedded in an optical waveguide
      • Consists lower and upper cladding layers (n-doped and p-doped shields)
  • 8. QDL – Application Requirements
    • Same energy level
      • Size, shape and alloy composition of QDs close to identical
      • Inhomogeneous broadening eliminated  real concentration of energy states obtained
    • High density of interacting QDs
      • Macroscopic physical parameter  light output
    • Reduction of non-radiative centers
      • Nanostructures made by high-energy beam patterning cannot be used since damage is incurred
    • Electrical control
      • Electric field applied can change physical properties of QDs
      • Carriers can be injected to create light emission
  • 9. Q. Dot Laser vs. Q. Well Laser
    • In order for QD lasers compete with QW lasers:
    • A large array of QDs since their active volume is small
    • An array with a narrow size distribution has to be produced to reduce inhomogeneous broadening
    • Array has to be without defects
      • may degrade the optical emission by providing alternate nonradiative defect channels
    • The phonon bottleneck created by confinement limits the number of states that are efficiently coupled by phonons due to energy conservation
      • Limits the relaxation of excited carriers into lasing states
      • Causes degradation of stimulated emission
      • Other mechanisms can be used to suppress that bottleneck effect (e.g. Auger interactions)
  • 10. Q. Dot Laser vs. Q. Well Laser
    • Comparison of efficiency: QWL vs. QDL
  • 11. Comparison High speed quantum dot lasers Advantages Directly Modulated Quantum Dot Lasers
    • Datacom application
    • Rate of 10Gb/s
    Mode-Locked Quantum Dot Lasers
    • Short optical pulses
    • Narrow spectral width
    • Broad gain spectrum
    InP Based Quantum Dot Lasers
    • Low emission wavelength
    • Wide temperature range
    • Used for data transmission
  • 12. Comparison High power Quantum Dot lasers Advantages QD lasers for Coolerless Pump Sources
    • Size reduced quantum dot
    Single Mode Tapered Lasers
    • Small wave length shift
    • Temperature insensitivity
  • 13. Bottlenecks
    • First, the lack of uniformity.
    • Second, Quantum Dots density is insufficient.
    • Third, the lack of good coupling between QD and QD.
    • The early models were based on the assumptions :
    • Only one confined electron level and hole level
    • Infinite barriers
    • Equilibrium carrier distribution
    • Lattice matched heterostructures
  • 14. Breakthroughs Temperature dependence of light-current characteristics Modulation waveform at 10Gbps at 20°C and 70 °C with no current adjustment
  • 15. Future Directions
    • Widening parameters range
    • Further controlling the position and dot size
    • Decouple the carrier capture from the escape procedure
    • Combination of QD lasers and QW lasers
    • Reduce inhomogeneous linewidth broadening
    • Surface Preparation Technology
    • Allowing the injection of cooled carriers
    • Raised gain at the fundamental transition energy
    using by In term of to
  • 16. Conclusion
    • During the previous decade, there was an intensive interest on the development of quantum dot lasers. The unique properties of quantum dots allow QD lasers obtain several excellent properties and performances compared to traditional lasers and even QW lasers.
    • Although bottlenecks block the way of realizing quantum dot lasers to commercial markets, breakthroughs in the aspects of material and other properties will still keep the research area active in a few years. According to the market demand and higher requirements of applications, future research directions are figured out and needed to be realized soon.
  • 17. Thank you! Q & A

×