Nmed presentation


Published on

Published in: Technology, Business
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Nmed presentation

  1. 1. Development of Hand-held Instrument for STI Diagnostics Enabling(and(TranslaGng(Advances(in(DiagnosGc(and( CommunicaGon(Technologies(to(Reduce(the(Burden(of(Sexually( TransmiJed(InfecGons( Professor.((W.(Balachandran((Bala)( Director((of(the(Centre(For(Electronic(Systems(Research( School(of(Engineering(&(Design( Brunel(University( emstwwb@brunel.ac.uk( March 2013 1"
  2. 2. Self Testing Instrument for Sexually Transmitted Infections Taking laboratory diagnosis into the field
  3. 3. Integrated System for POCT Sample( collecGon( MicroFluidic(Network(( Sample( concentraGon( (&(cell(lysis( DNA(ExtracGon( (&(PurificaGon(( DNA(( AmplificaGon( Electronic(Control(System( DNA(( DetecGon( ((((((Wireless(( (((((Interface( 3"
  4. 4. The Team Professor"Wamadeva"Balachandran"(Bala)" Principal(InvesGgator Professor"Rob"Evans" Professor"Chris"Hudson" Dr"Predraig"Slijpevic""" Biosciences Biosciences( Electronic(Engineering( Sivanesan"Tulasidas"" Sara"Chaychian" PhD(Student" PhD(Student( Wireless( Electrical(Engineering( CommunicaGon" "" Dr"Jeremy"Ahern" MicrofabricaGon Tosan"Ereku" PhD(Student( Engineering(Design( Dr"Yanmeng"Xu" Dr"Nada"Manivannan" MulGphysics(Modelling Printed(Electronics( Branavan"Nehru" PhD(Student( Paper(microfluidics( Shavini"Wijesuriya" PhD(Student( Engineering(Design( Dr"Krishna"Burugapalli"""""" Dr"Ruth"Mackay" Biomedical(Engineering BioMEMS/NEMS Sana"Hussain" VisiGng(Scholar( Biosciences( Pascal"Craw" PhD(Student( Biomedical(Engineering(
  5. 5. Modular Research Platform Sample(preWtreatment Electronic(System Display(and(User( Interface ConcentraGon(/(PurificaGon Electromagnets StandardisaGon Pumps Valve(actuators Microcontroller( Power(Management( Sample(&(Reagents Nucleic(Acid( Detector( MagneGc SPR CommunicaGon( Disposable(Cartridge Thermal(control MEMS RFID GPS Electrochemical Bluetooth( 3G(Mobile OpGcal( WiFi USB Interface Control(System( Microfluidic( Network( Lysis Sensors Electromagnets AmplificaGon Nanowire Valves Pathways DetecGon Waste
  6. 6. Sample Collection •  •  •  •  Swab and urine 4mL of urine 100uL swab elute Simple design ‘Foolproof’ •  Direct integration to extraction device •  Integrated lysis Urine collection devices
  7. 7. FE Analysis to Inform Design CessaNonal" flow" of" urine" from" six" inlets"into"the"airQfilled"cavity" Streamline depiction of flow from inlets to device discharge orifice
  8. 8. DNA Extraction using Superparamagnetic Beads (a) Ports 9 mm 1 mm PMMA Central stub to Assist the Coil Location 500um PDMS Coil recess Microfluidic Chamber Side Via to Port Stainless Steel Port-ways (b) Position of Chamber in PDMS Layer Port Position 8 mm 12mm Pitch Circle for Ports 9 mm Coil Recess Diameter 250mm Bore PVC Tubing (c) Port Vias Polystyrene Collars Chamber Cut-out A photograph of microfabricated chamber with PVC tubing 8"
  9. 9. Microfluidic Dispenser
  10. 10. DNA Extraction using Cationic Biopolymer •  Novel membrane in development •  Cationic bioploymer membrane •  Reduces number of steps for DNA extraction •  No toxic reagents •  Simple pH (5-9) change in aqueous solutions •  2 reagents required •  Simple flow over device: no centrifugation/active mixing Two( DNA( extracGon( devices( with( embedded( biopolymer(membrane(
  11. 11. DNA Extraction Performance 100" Percentage(Recovery(((%)( 90" 80" 70" 60" 50" Spin"Column"(Qiagen)" 40" Bioplymer"membrane" 30" 20" 10" 0" 0" 0.1" Sample(ConcentraGon((ng/uL)( (Salmon(sperm(DNA)( 100"
  12. 12. Lab-in-a-Tube Biopolymer and Lysis buffer will be integrated into the device to extract DNA Cell Lysis and DNA Extraction"
  13. 13. Isothermal Amplification •  Helicase dependent amplification •  Single temperature (65 C) •  109 amplification power •  < 20minutes reaction time •  Can be used with real-time fluorescence chemistries On-chip helicase dependent amplification 10" 9" 8" Final"DNA"concentraNon"(ug/mL)" 7" RealWGme(plot(of(HDA(reacGon( Fluorescence" 6" PosiNve" Control" 5" 4" 3" 2" NegaNve" control" OnQ chi p" 25 µL" rea cN on" Time"(minutes)" 0" Sta nd ard" 25 µL"" tub e" rea 0""""""""""""""""""""5"""""""""""""""""""""10""""""""""""""""""15"""""""""""""""""""20"""""""""""""""""""25"""""""""""""""""""30"""""""""""""""""""35""""""""""""""""""40" 1"
  14. 14. On-chip Amplification and Detection 0" ReacNon" Chamber" 490nm" LED" PMMA" Fluidic" Chip" OpNcal"Fibre" 3mm"PMMA" Emission"bandQpass"Filter"" (530nm)" 25µL"microfluidic"chip" Amplified" Photodiode" Finite"element"analysis"of" microfluidic"chip"to"characterise" thermal"properNes" Fluorescence"detecNon"on"microfluidic"chip"
  15. 15. Magnetic Bead-based DNA Detection Planar Spiral Inductor for Inductance-based biosensor
  16. 16. Nano-particle/bead fabrication a" b" c" Silver"NPs;"a)1,"b)5"and"c)10µl"Hydrazine"in"0.1M"AOT/IPM"microemulsions" e" f" g" Gold"NPs;"e)"1,"f)5"and"g)10µl"Hydrazine"in"0.1M"AOT/IPM"microemulsions"
  17. 17. Inductance Sensor: Simulation ( Circular(planar(coil( I(=(100(mA,((N(=(5(( Maximum(electric(potenGal(=(160((mV( MagneGc(Flux(Density(=((4"Q"16(mT( ( ( Square(planar(coil( I(=(100(mA,((N(=(5(( Maximum(electric(potenGal(=(110((mV( MagneGc(Flux(Density(=((4"Q"12(mT( (
  18. 18. Effect of dout on δL Effect of Beads Permeability µrB on δL tc =2µm 18"
  19. 19. Effect of Conductor Thickness tC on δL Effect of Thickness of Underlying Permalloy tp on δL The Effect of Frequency on Sensor Output 19"
  20. 20. Integrated Microfluidic Cartridges 10mm" 10mm" Brass/Al"mould"for"a"detecNon"microfluidic" device" Al"mould"for"a"fully"integrated"microfluidic" system" 10mm" DetecNon"device"with" automated"fluid"flow"and" electrodes" Integrated"microfluidic"PDMS"" device"
  21. 21. Communication Design Strategy
  22. 22. Paper based microfluidics (µPADs) Fabrication of µPADs Printed"barriers"(Wax)" Cured"barriers"(Wax)" Xerox"ColorQubeTM" 8570N"solid"ink" Printer" Wax"penetraNon:"comparison"of" printed"barriers"before"and"aher" curing"at"120oC"for"15"minutes" MulNplexing:"A"single" sample"effecNvely" delivered"into"5"test"zones" DNA"mobility"on"a" µPAD" Printed"barriers"of"500"µm" produced"fully"funcNonal"barriers." A"minimum"channel"width"of"~"300" µm"is"achievable." Inkjet"printed"silver" electrodes"(25"µm)"
  23. 23. DNA Detection on µPADs 0(s( 30(s( 90(s( W(1( 0s"–"A"blank"test"device"as"a"control"before"introducNon"of"""" W(2( FITC"tagged"25mer"DNA"sample"(0.01nM)." " 30s"–"DNA"sample"moving"within"the"hydrophilic"channel." " 90s"–"Further"movement"of"the"sample"into"the"waste"zone." " W1"–"DNA"sample"gelng"washed"away"by"water"into"the" waste"zone." " W2"–"Further"washing"of"the"DNA"by"water"into"the"waste" zone." Stock"DNA" soluNon"0.1nM" Serially"diluted" 0.01nM"DNA"" Serially"diluted" 1pM"DNA"" Serially"diluted" 0.1pM"DNA"" Water"as" control"" Blank"paper" as"control"" All"above"pictures"are"obtained"through"the"BIOQRAD"Gel"DOCTM"XR+"system"and"the"associated"image"analysis"sohware"Image"LabTM."""
  24. 24. Handheld Device Development The current handheld system development Future GUI